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Abstract

The complete elastic tensor of YNi2B2C was determined by application of the resonant ultrasound spectroscopy

technique to a single-crystal sample. Elastic constants were found to be in good agreement with partial results obtained

from �time-of-flight� measurements performed on samples cut from the same ingot. From the measured constants, the

bulk modulus and Debye temperature are calculated.

� 2003 Elsevier B.V. All rights reserved.
The discovery of superconductivity in the
borocarbide quaternary intermetallic compounds

[1] has generated a great deal of interest due to the

observed interplay between superconductivity and

magnetic order. Compounds in this family have

formulae of the form RNi2B2C, where choice of

the rare earth ion, R, strongly affects the physical

properties, which range from superconducting

with no magnetic ordering (R¼Y) to non-super-
conducting with a N�eeel temperature of 19 K (R¼
Gd) [2].

Recent heat transport measurements on non-

magnetic borocarbides suggest that the supercon-

ductivity is very anomalous, with a gap that is

either highly anisotropic [3] or has point nodes [4].

To elucidate the nature of the order parameter, a

powerful tool is ultrasound attenuation (see for
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example Ref. [5]). As a first step towards measur-
ing the attenuation of sound it is important to

establish the full elastic tensor of the material.

The second-order elastic constants relate stres-

ses placed on a material along various directions to

the resulting deformations of the crystal lattice. As

such, knowledge of a compound�s elastic constants
can be useful when investigating a number of solid

state properties, such as interatomic potentials,
equations of state, phonon spectra, the Debye

temperature, and the bulk modulus. In the most

general case, a highly anisotropic solid can have

21 independent second-order elastic constants, but

the crystal structure for all compounds in the

RNi2B2C group is body-centered-tetragonal (space

group I4=mmm), consisting of R–C planes sepa-

rated by Ni2B2 layers stacked along the c-axis [6],
reducing the number of independent constants to

six [7]. In Voigt notation, these constants are de-

noted C11, C33, C13, C12, C44, and C66; all other

tensor entries can be retrieved from these six.

In this article, the elastic constants of YNi2B2C

are determined at room temperature via two
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methods: resonant ultrasound spectroscopy (RUS)

and ultrasonic time-of-flight. RUS [7] allows the

determination of the complete elastic tensor of a

material in one measurement, and was used as the

primary experimental technique of this study. As

a complement to the RUS measurements, elastic
constants were also determined by measuring

sound velocities using the more conventional

�time-of-flight� method. Note that this study adds a
missing elastic constant and provides a very ac-

curate second measure to time-of-flight results in

slight disagreement.

The RUS method utilizes the normal modes of

vibration of a solid sample of known density,
geometry and crystal structure to determine the

elastic tensor. To perform an RUS measurement,

the normal mode frequency spectrum of the sam-

ple in question is first obtained. This is done by

holding the sample between two piezo-electric

transducers, generally by its corners in order to

reduce damping of the vibrational modes. One

transducer is driven at a frequency which is swept
across the region of the spectrum containing the

normal modes, thus driving the sample resonances,

while the other picks up the resulting amplitudes

of crystal vibration (see Fig. 1).

Once a list of normal mode frequencies has been

compiled, the elastic constants can be calculated.

While it is possible to directly compute the normal

mode frequencies of a sample, given the dimen-
sions, mass, and elastic constants, there is no

known analytic method to do the reverse, so a

computerized fitting algorithm has been developed

[7] to numerically complete the calculation. This

algorithm changes the elastic constants, calculates
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Fig. 1. Schematic of a typical RUS experimental set-up (from

Ref. [21]).
resulting normal mode frequencies, compares

these calculated frequencies to the experimentally

measured list and then iteratively repeats the pro-

cess until the best fit to the data is obtained.

In the time-of-flight method, short ultrasound

pulses are propagated through a sample carefully
prepared with two flat, parallel faces, and later

detected in order to obtain the sound velocity in

the direction of pulse propagation. The diagonal

entries of the elastic tensor can be easily calculated

using the velocities measured along various prin-

cipal crystal directions. The off-diagonal constants,

however, require measurements of sound velocities

in non-principal directions, which can be difficult.
The equation (C11þC12þ2C66Þ=2¼ qv2½110=L�, where
q is the mass density of the material, and v½110=L� is
the velocity of sound propagating in the [110]

direction with a longitudinal polarization, is an

example of how a sound velocity is related to the

elastic constants for a tetragonal crystal [8]. In

this notation scheme, a transverse polarization,

for example in the [010] direction, is indicated by
T 010.

With the complete elastic tensor, the bulk

modulus of a tetragonal crystal, B0 ¼ �V ðdP
dV Þ, is

easily obtained via the equation:

B0 ¼
C33ðC11 þ C12Þ � 2C2

13

C11 þ C12 þ 2C33 � 4C13

: ð1Þ

Also, an estimate of the Debye temperature can

be made. For a crystal with tetragonal structure

the following equation [9] is employed:

hD ¼ h
kB

9N
4pV

� ��1=3

q�1=2J�1=2; ð2Þ

where h is Planck�s constant, kB is Boltzmann�s
constant, N is the number of atoms per unit cell, V
is the volume of the unit cell, q is the mass density

of the material, and J is the harmonic series ex-
pansion of an integration over sound velocities in

all directions, written in terms of the elastic con-

stants Eqs. (32) and (33) in Ref. [9].

A large high-quality single crystal specimen of

YNi112 B2C was grown using the floating zone

method. From this specimen a sample was cut

using spark erosion and then polished into the

shape of a rectangular parallelepiped, with sides



Table 1

Comparison between experimentally measured normal mode

frequencies and normal mode frequencies generated by fit

n fmeas (MHz) fcalc (MHz) jerror %j
1 0.529514 0.528532 0.19

2a 0.597221 0.591763 0.91

3 0.647704 0.646337 0.21

4 1.135447 1.136584 0.10

5 1.163147 1.162634 0.04

6 1.190192 1.184750 0.46

7 1.245350 1.244220 0.09

8 1.774185 1.779893 0.32

9 1.791589 1.784886 0.37

10 1.860806 1.859335 0.08

11 1.976029 1.972153 0.20

12 2.246914 2.253101 0.28

13 2.307146 2.307743 0.03

14 2.368161 2.364670 0.15

15 2.520553 2.520366 0.01

16 2.561937 2.563005 0.04

17 2.601103 2.601906 0.03

18 2.645586 2.649300 0.14

19 2.678345 2.663728 0.55

20 2.688584 2.676061 0.47

21 2.760655 2.737530 0.84

22 2.787477 2.789393 0.07

23 2.848279 2.849765 0.05

24 2.861686 2.855943 0.20

25 2.886700 2.889564 0.10

26 2.915996 2.901747 0.49

27 2.947486 2.950772 0.11

28 2.997868 3.004079 0.21

29 3.076659 3.078714 0.07

30 3.103831 3.108858 0.16

31 3.166186 3.178981 0.40

32 3.251992 3.260277 0.25

33 3.365420 3.376704 0.34

34 3.426382 3.440963 0.43

35 3.439616 3.444319 0.14

36 3.493864 3.508879 0.43

37 3.523911 3.513904 0.28

38 3.540339 3.557265 0.48

39 3.677818 3.647198 0.83

40 3.728029 3.719723 0.22

41 3.778609 3.790058 0.30

42b – 3.792207 –

43 3.836754 3.858453 0.57

44 3.864763 3.861419 0.09

45 3.902221 3.899468 0.07

46 3.926129 3.926370 0.01

47 3.935864 3.935392 0.01

48 3.971114 3.966542 0.12

49 3.977251 3.978405 0.03

50 3.995687 3.988349 0.18

51b – 4.023993 –

52 4.039216 4.039890 0.02

53 4.046316 4.042717 0.09

Table 1 (continued)

n fmeas (MHz) fcalc (MHz) jerror %j
54 4.060185 4.053374 0.17

55 4.067538 4.057332 0.25

56 4.090402 4.081257 0.22

57 4.107759 4.082228 0.62

58 4.119079 4.139375 0.49

59 4.148179 4.147882 0.01

60 4.195629 4.176098 0.47

61 4.221953 4.211651 0.24

62 4.238927 4.244522 0.13

63 4.308970 4.332035 0.54

64 4.332351 4.343469 0.26

65 4.338505 4.366086 0.64

66 4.386658 4.378300 0.19

67 4.399958 4.389225 0.24

68 4.442720 4.456998 0.32

69 4.480628 4.504514 0.53

70 4.494579 4.514557 0.44

71 4.514518 4.520470 0.13

aNot weighted in the fit, as discussed in the text.
bMissing modes, not detected by the apparatus as explained

in the text.
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aligned along the principal crystal axes as deter-
mined by Laue X-ray backscattering measure-

ments.

Dimensions of the polished sample were mea-

sured to be 0.0633(8) cm · 0.0873(9) cm · 0.238(2)
cm. The sample mass was 0.00832(3) g, yielding a

density of 6.3(1) g/cm3. Note that this is somewhat

different from the density of 6.09(1) g/cm3 for

YNi112 B2C calculated using lattice constants ob-
tained from X-ray/neutron measurements [6,10–

14].

A number of other measurements do indicate

good sample quality. Specifically, a residual resis-

tivity ratio (RRR) of 14.2, a superconducting

width of 0.3 K, and a Tc of 14.7 K, were observed
via resistivity measurements on our specimen,

which compare favourably with published values
[1,10,11,14–20].

The experimental apparatus used to detect

normal mode frequencies was a DRS Modulus I

Resonant Ultrasound Spectrometer, with lead

zirconate titanate transducers. This system has

previously been used to successfully determine the

elastic constants of Sr2RuO4 [21].

Once compiled, the list of normal mode fre-
quencies was fitted, and appropriate elastic con-

stants obtained. The measured dimensions of the
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sample were used as initial dimensions for the

program input, but as the measuring errors in

these values were the largest sources of error in this

study, the dimensions were left as free parameters

in the fit. Thus, nine free parameters––six elastic

constants and three dimensions––were fitted to the
measured frequency data, while the mass was held

constant.

Two other samples were cut from the same

ingot as the RUS sample and polished to facilitate

time-of-flight measurements in the [1 0 0] and

[1 1 0] directions. Sample thicknesses were mea-

sured to be 0.319(2) and 0.227(2) cm for the sam-

ples oriented along the [1 0 0] and [1 1 0] directions,
respectively. In all cases, transducers were bonded

to samples using phenyl salicylate and silicone for

room and low temperature measurements respec-

tively. Time-of-flight measurements were made at

room temperature (300 K) and low temperature

(2 K) using 20 and 30 MHz LiNbO3 transducers

and a home-built spectrometer [22], which utilizes

the phase comparison technique at frequencies
between 20 and 500 MHz. This apparatus has

previously been used in a successful study of ul-

trasonic attenuation in Sr2RuO4 [5].

Using the RUS technique, a total of 68 normal

modes were measured between 0.5 and 4.5 MHz.

The frequencies of these measured modes, along

with the frequencies of the calculated modes from

the best fitting run and the percent difference be-
tween them, are shown in Table 1. The corre-

sponding frequency spectrum is shown in Fig. 2,

with a representative portion of the spectrum inset
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Fig. 2. The frequency spectrum measured for YNi2B2C. Inset: a repres

from 2.85 to 2.96 MHz in detail.
in more detail. In the full-range view, a large

amount of noise was measured between approxi-

mately 0.7 and 1.1 MHz, and is attributed to fre-

quency characteristics of the measuring apparatus

itself. A prototype RUS apparatus, with poly-

vinylidene fluoride (PVDF) film transducers [23],
was used to verify that no normal mode frequen-

cies of the sample lay in this range. In addition, the

fits indicate no missing modes in this region.

The best fit to the data had a root-mean-square

error between measured and calculated frequen-

cies of 0.38%, indicative of a good fit. The fitted

dimensions were 0.0636(6) cm · 0.0878(8) cm ·
0.236(2) cm, which agree with measurements, also
providing confirmation of a good fit. Note that

only two modes were not detected, but were de-

termined to be existent through the fitting proce-

dure. Also, the second mode was not weighted in

the fit, a common practice among the first 1–2

modes in RUS measurements [7].

The elastic constants determined via the best fit

are listed in Table 2. Error values are obtained
from the largest of either an estimation of the

quality of the fit, as generated by the fitting pro-

gram, or from the variation in Cij values over the

range of densities allowed by the error in the

measured dimensions. Specifically, the errors in

C44 and all three fitted dimensions come from the

error in density, while the rest come from quality-

of-fit estimates.
Also included in Table 2 are the elastic constants

determined from three different sources using

the time-of-flight technique: room temperature
 3  4 5

ncy (MHz)

5 2.90 2.95

entative portion of this spectrum is expanded, covering a region



Table 2

Elastic constants of single crystal YNi2B2C, in units of 1012 dyn/cm2

Method C11 C33 C13 C12 C44 C66 T (K)

RUS 2.94(6) 2.61(5) 1.25(6) 1.57(7) 0.644(4) 1.42(1) 300

Time-of-flight 2.84(7) 1.45(7) 0.67(1) 1.43(3) 300

Time-of-flight 2.9(2) 1.49(8) 0.67(4) 1.3(2) 2

Time-of-flighta 2.2(2) 2.1(2) 1.0(2)b 0.54(5) 1.3(1) 14.2

a From Ref. [18].
b Calculated from the quoted values of C11 and ðC11 � C12Þ=2 in Ref. [18].
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measurements from this study, low-temperature

measurements done by our group [24] and low-
temperature measurements by Isida et al. [18]. The

elastic constants from our room temperature and

low-temperature time-of-flight measurements were

calculated from velocity data as discussed above

[8]. An example of the raw time-of-flight data used

to obtain velocities is shown in Fig. 3. The time

delay between each echo is equivalent to the total
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Fig. 3. Example of raw time-of-flight data, in the case of a low-

temperature (2 K) measurement of v½1 1 0=T0 0 1�.

Table 3

Sound velocities in YNi2B2C, in units of km/s

Method v½1 0 0=L� v½0 0 1=L� v½1 1 0=T0 0 1�, v½1 0 0=T

RUS 6.8(2) 6.4(2) 3.20(5)

Time-of-flight 6.72(6) 3.26(2)

Time-of-flight 6.8(3) 3.3(2)

Time-of-flighta 6.0(3) 5.9(3) 3.0(1)

a From Ref. [18].
travel time of an ultrasound pulse going through

the sample and back; when taken with the thickness
of the sample this yields the velocity of sound for

that particular direction of propagation/polariza-

tion combination.

The measured and calculated sound velocities

with the appropriate polarization and direction are

listed in Table 3. Note that whenever the density of

YNi2B2C was required in a calculation, q ¼ 6:3ð1Þ
g/cm3 was used for measurements performed on
our specimen, and q ¼ 6:05 g/cm3 was used for the

measurements by Isida et al. [18].

Upon inspection of the data shown in Tables 2

and 3, it is immediately apparent that while the

values obtained via both the RUS and time-of-

flight methods of our group agree within error, the

values published by Isida et al. [18], with the ex-

ception of C66, are between 16% and 36% lower
than the RUS results and both sets of time-of-

flight results from our group. Reasons for this

disagreement are not clear, but agreement of RUS

and time-of-flight measurements on samples cut

from the same specimen may suggest the signifi-

cance of differences in sample composition be-

tween the two groups.

The RUS values of the elastic constants give a
bulkmodulus for YNi2B2C of 1.8(1)· 1012 dyn/cm2.

This is in the range of the isothermal bulk modulus

values of 1.2(1)· 1012 and 2.00· 1012 dyn/cm2
0 0 1� v½1 0 0=T0 1 0� v½1 1 0=T1 �11 0� v½1 1 0=L� T (K)

4.74(8) 3.3(3) 7.6(2) 300

4.76(4) 3.36(2) 7.66(4) 300

4.5(6) 3.3(2) 7.4(4) 2

4.7(2) 3.2(2) 6.9(7) 14.2
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previously measured for this material by X-ray

diffraction [25,26], which gives us added confidence

in our results. Furthermore, the Debye tempera-

ture was calculated via Eq. (2), yielding a value of

525(10) K, which falls within the wide range of

published values of the Debye temperature for
YNi2B2C: 310(20) K [19] from a resistivity mea-

surement, and 415 K [17], 489(5) K [20] and 537 K

[16] from specific heat measurements.

In conclusion, all six independent elastic con-

stants of YNi2B2C have been determined using the

resonant ultrasound spectroscopy method. Good

agreement was found between these results and the

elastic constants measured using the time-of-flight
technique on a sample from the same ingot. A

calculation of the bulk modulus and an estimation

of the Debye temperature of YNi2B2C were per-

formed with the elastic constants obtained in this

study, and the results were found to be consistent

with the range of values found in the literature for

these quantities.
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