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Artificial intelligence for search and discovery
of quantum materials
Valentin Stanev 1,2✉, Kamal Choudhary3, Aaron Gilad Kusne1,3,

Johnpierre Paglione 2,4,5 & Ichiro Takeuchi1,2

Artificial intelligence and machine learning are becoming indispensable tools in many areas of

physics, including astrophysics, particle physics, and climate science. In the arena of quantum

materials, the rise of new experimental and computational techniques has increased the

volume and the speed with which data are collected, and artificial intelligence is poised to

impact the exploration of new materials such as superconductors, spin liquids, and topolo-

gical insulators. This review outlines how the use of data-driven approaches is changing the

landscape of quantum materials research. From rapid construction and analysis of compu-

tational and experimental databases to implementing physical models as pathfinding

guidelines for autonomous experiments, we show that artificial intelligence is already well on

its way to becoming the lynchpin in the search and discovery of quantum materials.

In the last decade, a broad new topic has emerged at the forefront of condensed matter physics.
It includes recently discovered exotic systems such as two-dimensional (2D) materials1,
topological insulators2, topological superconductors3, and Weyl semimetals4 alongside several

materials that have been baffling researchers for many years—unconventional superconductors5–7

and quantum spin liquids8—in the loosely-defined family of “quantum materials”9. The unifying
theme connecting these seemingly disparate systems is the idea of emergence—they cannot be
understood as simple ensembles of noninteracting fermions or bosons in “free” space; rather, their
unique properties spring out of the collective behavior of a macroscopic number of interacting
quantum particles. These materials host various exotic excitations, e.g., “relativistic” fermions in
Dirac materials, Majorana bound states in topological superconductors, and skyrmions in chiral
magnets10, which not only enrich our fundamental understanding of matter but also hold the
promise of “quantum” leaps in a multitude of technological arenas. Because of its high carrier
mobility, graphene stands to change the future of high-speed electronics and communication
devices11. Topological insulators, which exhibit quantized anomalous quantum Hall effect12–14,
possess spin-momentum-locked conduction channels that are immune to backscattering and can
be used to make perfect spin-filtering devices15.

But arguably the most exciting prospect is the use of topological superconductors in fault-
tolerant quantum computing16. Quantum information processing based on manipulating
topologically protected Majorana states provides an inherent cover against the threat of deco-
herence—the Achilles heel of most embodiments of qubits. Great strides are being made toward
realizing topological superconducting qubits using existing materials (e.g., by inducing super-
conductivity in topological insulators through the proximity effect)17,18; however, there is very
little progress in systematically identifying many true “intrinsic” topological superconductors.

In general, the search for new quantum materials presents an immense scientific challenge.
The rich tapestries of quantum physics, which make them so exciting are also the very reasons
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which render them so difficult to decipher. The notorious case in
point is the superconductivity in cuprate materials, whose fun-
damental mechanism still eludes us after three decades of con-
certed research efforts5,6,19. For some strongly correlated
quantum materials such as spin liquids even the theoretical lan-
guage necessary to adequately describe them is yet to be fully
developed. When there is no guidance from rigorous theory, we
are often left with serendipity to work with while exploring new
compounds. There is, however, a glimmer of hope in an unusual
form: research tools using Artificial Intelligence (AI) are coming
to the rescue.

The explosive increase in computational power and volume of
accessible data is fueling the growth of AI as it transforms many
aspects of our everyday lives with emerging technologies such as
self-driving vehicles and Internet of Things devices. AI, especially
its subfield of Machine Learning (ML), is also becoming a bread-
and-butter analysis tool, with important applications in virtually
all sciences, from cancer research20 to astrophysics21. ML has
already made its mark on condensed matter and materials physics
by providing a robust platform for extracting a parsimonious
description of a materials system from experimental and com-
putational data22–28. When the task at hand is the discovery of
new quantum materials, then one obvious strategy is to unleash
ML on information obtained from existing compounds to make
predictions on compositions and collective behaviors of their
atomic constituents.

In this review, we discuss the ongoing research spearheading
the effort to turn AI into a ubiquitous and indispensable tool for
the study of quantum materials. The complexities and rich phy-
sics of these materials make them simultaneously one of the most
promising targets and a particularly challenging subject for the
emerging AI-enabled methods. Only exhaustive high-
dimensional data encompassing a diverse range of physical
properties can help scientists develop a comprehensive under-
standing of materials such as unconventional superconductors,
with complex physics often rooted in strong electron–electron
interactions, or graphene superlattices, hosting a multitude of
competing phases29. Thus, data need to be fused from disparate
sources with vastly different modalities and veracities: theoretical
models and first-principles computational tools, various experi-
mental measurements, and results from previous studies. This
review provides a vision for the future where ML algorithms are
commonly proliferated for the creation, analysis, and visualiza-
tion of such high-dimensional heterogeneous data collections.
The focus of the article is superconductivity, which is one of the
most intensely pursued topics in all of condensed matter physics:
the continued research effort, combined with its relatively long
history, has led to significant accumulation of computational and
experimental data—a prerequisite for the use of ML tools.
However, the tools being developed to study superconductors
have the potential to dramatically increase the efficiency of the
experimental and computational studies of all quantum materials,
representing a veritable breakthrough in the exploration of these
complex physical systems. (For some common AI terminology
and recent examples of ML applied to quantum materials pro-
blems see Fig. 1 and Box 1.) Still, this vision is not without its
share of potential pitfalls. In the sections below, we discuss the
benefits and challenges associated with AI-based approaches to
novel quantum materials.

AI for computational quantum materials
In application after application, it has been demonstrated that ML
can turn complex multidimensional data into actionable knowl-
edge (see, for example, refs. 30–32). The success of ML methods,
however, depends crucially on access to prodigious amounts of

high-quality data. Not surprisingly, in physical sciences, these
algorithms were first adopted in fields with abundant and highly
standardized measurements. In fact, the vast amounts of data
generated in particle physics have for decades required the use of
automated algorithms for data analysis21,33. The importance of
ML in this area is exemplified by the central role it played in the
discovery of the Higgs boson at the Large Hadron Collider at
CERN33.

When it comes to materials data, sophisticated computational
first-principles tools are the order of the day, and enormous
databases with millions of computed property entries are now
readily available at everyone’s fingertips34–38. In the realm of
quantum materials, however, the situation is less auspicious. The
most widely used computational method for simulating materials
properties is Density Functional Theory (DFT), which has served
as the backbone of materials by design in areas such as energy
and magnetic materials (see, for example, refs. 39–41). Yet, DFT is
built on several commonly used but essentially uncontrolled
approximations. While the trends of the physical properties (e.g.,
as a function of composition) calculated by conventional DFT are
generally correct, the veracity of the calculated parameters
depends significantly on computational details. For quantum
materials, calculated properties can become even more tenuous
and inaccurate, due for example, to self-interaction error origi-
nating in electron–electron interactions, spin-orbit coupling,
magnetism, etc. This severely limits the utility of conventional
DFT for entire classes of quantum materials. A very promising
emerging research area addresses this challenge by using ML
methods to systematically improve the approximations made in
DFT calculations42–45. AI methods are also being used to accel-
erate high-level methods such as Quantum Monte Carlo
(QMC)46,47 and Dynamical Mean Field Theory (DMFT)48, which
are more accurate than DFT but can be orders-of-magnitude
slower and higher in computational cost.

These exciting developments notwithstanding, for now, con-
ventional DFT remains the workhorse of computational materials
science. It has been shown that the calculations can be combined
with ML algorithms to efficiently and accurately predict materials
properties such as melting temperature, bandgap, shear modulus,
and heat capacity49–51. DFT methods were also at the center of
some of the early data-driven approaches to quantum materials,
especially in the search for new superconductors. The discovery of
superconducting materials has always been driven by serendipity
and individual researchers’ intuition. However, the complex
physics of cuprates and other strongly correlated materials (for
example organic charge-transfer salts, exhibiting a variety of exotic
phases: unconventional superconductivity, Mott insulator, spin
liquid, etc.52) has forced scientists to explore more advanced data-
centric approaches. In ref. 53, a series of DFT calculations of the
band structure of hole-doped cuprates were compared, in order to
identify physical parameters governing superconductivity in these
materials. The authors of ref. 54 went further and proposed several
distinct characteristics of the band structure of cuprates as key
precursors of their superconductivity. These characteristics were
then used as criteria to filter through the calculated electronic
structures of all materials in Inorganic Crystal Structure Database
(ICSD), containing hundreds of thousands of existing crystal
structures, and over 100 materials were identified as potential
high-temperature superconductors. A similar approach was used
recently in ref. 55, where p-terphenyl—an organic material that
shows hints of a possible superconducting transition at ≈123 K
when doped with potassium—was used as a prototype. A database
containing the electronic structure of more than 10,000 organic
crystals was surveyed for compounds with a similar density of
states (DOS)56, and as a result, 15 compounds were proposed as
candidate superconductors.
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The studies mentioned above combine DFT calculations with
heuristic criteria to search for novel superconductors. Such cri-
teria unavoidably suffer from various biases and can be difficult to
generalize. A much more rigorous approach is offered by ML
methods, which provide a systematic way to extract important
predictors of materials properties from complex high-
dimensional data. As an example, an investigation in 2015 used
structural and electronic properties data from the AFLOW
Online Repositories to define and calculate various fingerprints
that encode materials’ electronic band structures, as well as
crystallographic and constitutional information57. These finger-
prints were then used to create both regression and classification
ML models for the critical temperature of several hundred
superconductors. The classification model separating the mate-
rials into two groups based on their critical temperature showed
good predictive performance. Such models can be used to screen
hundreds of thousands of existing and potential materials stored
in computational databases.

In addition to directly predicting a property of interest (such as
Tc) from existing DFT data, ML can be used to accelerate the
intermediate computational steps. For example, in conventional
superconductors, the coupling between the electrons and the

lattice vibrations creates an effective attractive electron–electron
interaction leading to Cooper pair formation. However, an ab
initio calculation of electron-phonon coupling strength requires
knowledge of properties such as the phonon DOS, which are
computationally expensive, especially for complex materials. In a
recent publication, it was shown that a neural network model can
be trained to create high-fidelity phonon DOS predictions. The
authors utilized phonon DOS calculations of ~1500 crystalline
solids as a training dataset58. The predictions of the model were
able to capture the main features of phonon DOS, even for
crystalline solids with elements not present in the training set.
Thus, by reducing the computational cost of ab initio methods,
the use of ML can significantly enhance the throughput of
computational materials screening.

In yet another example of incorporating AI into DFT for
superconductivity, ML feature selection methods have been uti-
lized to derive a simple analytical expression improving the Allen-
Dynes approximation59. The Allen-Dynes analytical formula is
based on the Eliashberg-Migdal theory and is commonly used to
predict the critical temperature of electron-phonon paired
superconductors, reducing the number of required DFT calcula-
tions. The increase of the accuracy achieved in the new formula

Fig. 1 Commonly used machine-learning tasks and algorithms. The figure shows the most common types of machine-learning tasks and algorithms, as
well as recent examples of these algorithms applied to quantum materials problems. See Box 1 for the definitions of some key machine-learning terms.

Box 1 | Key terms

Artificial intelligence: “Intelligence” demonstrated by machines able to perceive their environment and take autonomous actions to achieve a goal.
Machine learning: Branch of AI, a method for automated model building. Design of systems that can learn from data and make decisions with minimal
human intervention.
Supervised learning: Subfield of ML, aimed at creating predictive models based on both input and output (target) data. Subdivides into:
Classification: Modeling target data with discrete categories.
Regression: Modeling continuous target data.
Commonly used algorithms include Linear Regression, Support Vector Machines, Decision Trees, Gaussian Processes, Neural Networks.
Unsupervised learning: Subfield of ML, aimed at discovering internal representations from input data only. The two most widely used subfields are:
Dimensionality reduction: Creating low-dimensional projections of high-dimensional data.
Clustering: Finding groups of related data points.
Commonly used algorithms include K-means Clustering, Hierarchical Clustering, Hidden Markov Models.
Active learning (optimal experimental design): Subfield of ML, designing algorithms able to interactively query an information source to obtain new
outputs. Query strategies are typically some mix of exploration (aiming to maximize new information) and exploitation (aiming to optimize a property).
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can improve the computational pipeline, which in turn can lead
to the discovery of novel superconductors faster.

In contrast to superconductors, the concept of materials with
intrinsic topologically nontrivial states is relatively new2,3. The
current flurry of activities was initially spearheaded by a theore-
tical prediction60 and the subsequent experimental confirmation
of the existence of topological insulators61,62—materials with
insulating bulk but protected metallic surface states. Despite the
significant efforts in the last decade, however, only a handful of
distinct topological insulators, as well as other topological mate-
rials such as Dirac and Weyl semimetals4,63–65 are known, and
given that many of them are difficult to synthesize and/or suffer
from deleterious properties—such as the presence of bulk trivial
states undermining the surface states, the community is always on
the lookout for new topological materials.

To address this issue, several groups have developed algorithms
such as symmetry indicators and spin-orbit spillage that use
materials chemistry and symmetry in combination with electro-
nic structures to calculate its topological properties, opening the
door to automated screening for new topological insulators and
semimetals66–68. Based on these ideas, several searches through
ICSD generated extensive lists of candidates corresponding to
various types of topological materials69–73. Such developments
make the field a fertile ground for the application of ML methods
(for an example see Fig. 2). A very recent work constructed a
gradient boosting model (a particular type of powerful supervised
learning algorithm) that can predict the topology of a given
known material based only on “coarse-grained” chemical com-
position and crystal symmetry predictors with an accuracy of
90%74. Similar to superconductivity, such models can be used to
accelerate the search for novel materials by providing fast and
efficient means to predict the possible topological nature of a
given candidate.

Another class of quantum materials systems is 2D materials1.
Since the breakthrough discovery of graphene in 2004, many
other 2D materials families (such as monolayers of hexagonal
boron nitride, silicene, germanene, stanene, phosphorene, and
transition metal dichalcogenides) have been synthesized1. They
have been the focus of a concerted investigation, both due to their
rich potential in technologies such as electronics, sensing, and
energy storage, and because they offer an entirely new avenue to

explore the interplay between particle–particle interactions, band
structure, and constrained dimensionality (leading to effects such
as the long-sought Wigner crystal75). The search for new 2D
materials and a systematic comparison of their properties is still
in its infancy. High-throughput DFT has been used in the last
several years to compile publicly available databases of potential
2D materials76–79. In ref. 80, a JARVIS-DFT dataset containing
results of 2D and 3D DFT calculations was used to develop hand-
crafted structural descriptors as inputs into gradient boosting
models to predict properties including exfoliation energies, for-
mation energies, and bandgaps. From the synthesis point of view,
the exfoliation energy is particularly crucial for 2D materials
design, yet its DFT is prohibitively expensive. These models were
then used to discover exfoliable materials satisfying specific
property requirements. In ref. 81, the Computational 2D Materials
Database (C2DB) was used to create an ML model (again based
on gradient boosting) utilizing composition and structural pre-
dictors to classify potential 2D materials as having low, medium,
or high stability. The model was used to discover potential 2D
materials suitable for photoelectrocatalytic water splitting.

Beyond monolayers, there is a vast configuration space of
possible van der Waals heterostructures, which can be formed by
stacking different 2D layers. Such hybrid structures add addi-
tional degrees of freedom to their functionalities, creating 2D and
3D materials with untold tunability. Because DFT is too time-
consuming to explore more than a small fraction of all possible
combinations, incorporating ML in the process provides a prac-
tical alternative. Recent work has trained several ML models for
predicting the interlayer distance and bandgap of bilayer
heterostructures82. The models showed good accuracy on both
tasks and were used to predict the properties of nearly 1500
hypothetical bilayer structures based on less than 300 DFT cal-
culations. This underscores the promise of combining DFT and
ML for rapid computational screening to identify new hybrid
heterostructures with interesting and desirable properties.

Applying ML to experimental databases: making predictions
from known materials
With the ability to quickly recognize patterns in large collections
of quantitative information, applications of AI approaches in

Fig. 2 Example of Density Functional Theory used to predict topological properties of materials. Periodic table trend showing the percentage chance
(color coded) that a compound containing any given element can be topologically nontrivial based on spin-orbit spillage approach, based on spillage data
for 4835 nonmagnetic materials (reproduced from ref. 68 under the terms of the Creative Commons CC BY license). The spillage is a machine-learnable
quantity, and an accurate classification model predicting it (utilizing gradient boosting decision trees) was developed in ref. 73.
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experimental materials data are becoming just as prevalent. One
natural task would be to apply them to databases amassing
experimentally known compounds and to build models for
making predictions. In the study of superconductors—a field with
more than a century of extensive research history—there are large
volumes of accumulated information. Sometimes even a small
fraction of this data can be used to discover important trends. In
an early pioneering work, Villars and Phillips demonstrated that
using just three stoichiometric descriptors (associated with ele-
mental makeups), the 60 known superconductors at the time (in
the 80 s) with Tc > 10 K can all be clustered in three islands83.
Based on this observation the authors made predictions for
potential high-temperature superconductors83,84. In another early
work, Hirsch used statistical methods to look for correlations
between normal state properties and Tc of the metallic elements
in the first six rows of the periodic table85.

With time, more and more of the experimental data collected
by generations of scientists are becoming easily accessible to
researchers. Thanks to tedious curation efforts over decades by
researchers at several institutes around the world, there are large
databases with compiled experimental report entries such as the
Phase Equilibria Diagram and the ICSD, arguably one of the
largest compendiums of experimental materials data86. Because of
their comprehensive and exhaustive nature, such databases have
become the de-facto standard-bearers for materials exploration
and development, and they often serve as a starting point for
building ML models (as already discussed above for use in con-
junction with purely computational approaches). While these
databases rarely contain functional properties, phase formation
and stability as well as phase diagrams can be used as blueprints
for navigating the materials exploration process. For example, a
recent work used ICSD data to train a neural network to predict
crystal structure information87. The network’s activations maps
were then used to group materials according to their composi-
tional and structural similarity, providing lists of materials
potentially sharing properties with known superconductors or
topological insulators (see Fig. 3a)

Unfortunately, when it comes to experimental databases of
known quantum materials, usually there are very few entries in

the datasets. In fact, one is often hard-pressed to find extensive
databases of functional materials in general. A rare exception is
the MatNavi database, managed by the National Institute of
Materials Science (NIMS) in Japan. It is an experimental database
encompassing well-curated information on materials with a
variety of functional properties. Transcribing published journal
results into formatted databases can be a massive undertaking,
which NIMS materials data scientists have managed to do for
decades. Some of the collected information is already being used
for data-driven materials exploration88,89. The Pauling File also
contains up to tens of thousands of individual composition
entries (and corresponding specific physical property quantities)
diligently entered over decades90.

This increase of the available experimental data, together with
the surge of popularity of AI topics and the appearance of
general-purpose ML libraries, led to a recent groundswell of
activities introducing sophisticated ML methods in the study of
superconductivity91–96. In one notable example91, Stanev et al.
considered more than 16,000 different compositions extracted
from the MatNavi SuperCon database, which contains an
exhaustive list of known superconductors as well as many “clo-
sely-related” materials varying only by small changes in stoi-
chiometry. Compared to the early exercise by Villars and Philips
in the 80 s, the orders-of-magnitude increase in the number of
data points has led to the possibility to create a robust ML
pipeline. The regression models developed to predict the values of
Tc for different superconducting families used over one hundred
stoichiometric descriptors, demonstrated strong predictive power
and high accuracy, and offered valuable insights into the origins
of superconductivity mechanisms in different materials groups
(see Fig. 3b). The models also demonstrated an important lim-
itation of ML in failing to extrapolate to materials families not
included in the training set. A pipeline was then created to search
for potential new superconductors among the roughly 110,000
different compositions contained in ICSD, which resulted in
predictions of possible Tc’s above 20 K in 35 known compounds
that had previously not been tested for superconductivity.

One interesting finding from this pipeline is that most of the
newly identified possible superconductors possess a flat/nearly-

Fig. 3 Examples of machine-learning methods applied to experimental data. a Three clusters (shown with blue, green, and red), representing groups of
related materials, containing topologically nontrivial materials. The materials representations are extracted from a neural network model predicting the
Bravais lattice from composition—for details, see ref. 87. The clusters can be used to search for new topological materials. b The measured vs predicted
ln(Tc) of various superconductors based on a random forest model presented in ref. 91. The same model can predict Tc of several distinct superconducting
classes (blue markers: low-Tc materials; green markers: iron-based superconductors; red markers: cuprate superconductors).
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flat band just below the Fermi energy, leading to an increase in
the electronic DOS. Such enhanced DOS has long been con-
sidered a promising way to boost Tc. However, a very recent study
using experimental Tc and DFT-based DOS calculations failed to
discover a strong and consistent correlation between super-
conductivity and peaks in the electronic DOS97. Yet, the strongest
conclusion from the latter study was on “…the restrictions that
the current availability and organization of materials data place
on reliable machine-learning and data-based experimentation,”
underscoring the need for a more systematic approach to col-
lecting and organizing quantum materials data.

This, however, is far easier said than done: the experimental
exploration of quantum materials is a remarkably diverse and
distributed endeavor, and it is not uncommon for tens or even
hundreds of research groups to study the same material, with
each group applying its unique toolbox and interrogation tech-
niques. Also, many experiments are extremely resource-intensive
and can only produce limited datasets. Combining numerous
small datasets covering the same material can lead to issues with
data consistency and incomplete metadata. Furthermore, the
quantum materials community has yet to fully embrace the open
data paradigm, and a significant fraction of the collected data are
only published in unstructured form (i.e., text and images) and
are not made easily available to other researchers. (Significant
fraction of the collected information—especially “negative”
results—is never published. For a rare example of work reporting
both negative and positive results see ref. 98).

Thus, if one wants to construct an experimental database of
quantum materials, the researcher may have to resort to the
laborious manual extraction of data points from published articles.
The significant effort required by this process at least partially
explains the scarcity of databases in the field. However, emerging
AI-driven automatic generation of databases can provide an alter-
native to the slow and tedious process. One example is the recently
created database of almost 40,000 Curie and Néel phase-transition
temperatures of magnetic materials99. It is fully auto-generated and
completely open-source. The database was produced using Natural
Language Processing (NLP) and related ML methods, applied to the
texts of published chemistry and physics articles. The method is
quite precise, with the accuracy of the extracted transition tem-
peratures reaching 82%. In a very recent extension of this work, the
same authors were able to reconstruct the phase diagrams of well-
known magnetic and superconducting compounds, again using text
data100. They also demonstrated that it is possible to predict the
phase-transition temperatures of compounds not present in the
database. (A yet another recent effort to organize various experi-
mental results into a curated database focuses on digitization of
plots extracted from published papers101.)

Extracting latent knowledge from materials characterization
data
In an ironic twist, in some areas of experimental materials phy-
sics, the issue is not the scarcity but the overabundance of data. In
fact, negotiating the large quantities of data churned out in real-
time by modern experimental labs is a significant emerging
challenge. Continual improvements in materials characterization
instrumentation coupled with the ever-increasing might of readily
available computers for data-acquisition and memory storage
have created the capacity to collect data on an unprecedented
scale and with high speed. Through advances in scanning
transmission electron microscopy, it is now possible to determine
atomic column positions with picometer level precision (see, for
example, refs. 102,103). Spectroscopy and scanning probe mea-
surements can provide detailed information about materials
properties including electronic structure and symmetry of an

order parameter104,105. Pump-probe techniques permit the study
of highly excited and out-of-equilibrium states and phases,
sometimes revealing hidden tendencies106.

With these techniques, even a single measurement of one
material can generate large volumes of high-dimensional data
necessitating the use of sophisticated statistical methods. In these
instances, ML algorithms are implemented for uncovering phy-
sics working behind the scene, which affects the collective beha-
vior of materials at an atomic scale. In one recent example, a
neural network model was used to analyze Spectroscopic Imaging
Scanning Tunneling Microscopy (SISTM) images of the CuO2

planes, where transport takes place in high-temperature super-
conducting cuprates107. The model was designed to recognize
different symmetry-breaking ordered electronic states. It was
trained on a set of artificial images, each generated to represent
one of four distinct states, differing by their fundamental wave-
vector. Various forms of heterogeneity, intrinsic disorder, and
topological defects were added to these images to mimic the
experimental data. The model was then applied to experimental
images from carrier-doped cuprates. Analyzing the noisy and
complex data, the model was able to discover the existence of a
translational-symmetry-breaking ordered state. The presence of
this particular ordered state has important implications for the-
ories aiming to explain the mysterious pseudogap phase of these
materials.

In another notable example, researchers applied an ML method
to the Angle-Resolved Photoemission Spectroscopy (ARPES) data
of optimally doped and under-doped cuprates108. The use of a
restricted Boltzmann machine model allowed the recovery of a
“hidden” feature in the spectra: prominent peak structures pre-
sent both in the normal and anomalous self-energies of the single-
particle spectral function. These peaks structures cancel each
other in the total self-energy and were only discovered by a model
respecting physical constraints such as causality (encoded in the
Kramers-Kronig relation). The use of ML allowed researchers to
solve a non-linear underdetermined problem, and to obtain
important information directly from experimental data, without
the use of any theoretical model. The results clarified the role of
the energy dissipation and quantum entanglement in the super-
conducting phase and provide a way to finally identify the boson
responsible for the pairing in cuprates.

Beyond superconductivity, ML was recently applied to neutron
scattering data of a frustrated magnet, exhibiting a complex phase
diagram, and used to extract model Hamiltonians and to identify
different magnetic regimes109. An autoencoder—dimensionality
reduction architecture based on a neural network—was trained to
create a compressed representation of three-dimensional diffuse
scattering, over a wide range of spin Hamiltonians. The auto-
encoder was able to find optimal Hamiltonian parameters
matching observed scattering and heat capacity signatures. The
autoencoder was also able to categorize different magnetic
behaviors and eliminate background noise and artifacts in raw
data. Thus, ML can augment many traditional diffraction and
inelastic neutron scattering data analysis tools, which are often
time-consuming and error-prone.

Another very recent work reported a convolutional-neural-
network-based classifier designed to distinguish topological from
trivial materials and trained on X-ray Absorption Spectroscopy
(XAS) data110. The model showed high accuracy in distinguishing
the different classes of materials, demonstrating the potential of
ML methods in recognizing topological character embedded in
complex spectral features. XAS is a widely used materials char-
acterization technique, and the ability to decipher the topological
character of material from XAS signatures can substantially
simplify and expedite the experimental identification of topolo-
gically nontrivial materials.
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Autonomous materials laboratories
Armed with predictions of potential quantum materials generated
by theory or the ML techniques discussed above, experiments can
be designed for systematic synthesis and characterization of novel
compounds. However, even with the predictions providing
blueprints, one often has to negotiate potentially large multi-
dimensional parameter space as in any materials exploration and
optimization task. One proven platform to effectively host such
experiments is the high-throughput approach, which permits the
interrogation of libraries that contain hundreds or even thou-
sands of different compounds111. Over the years combinatorial
approaches have been effectively used to explore new
superconductors112 and map their compositional phase diagrams
(for an example demonstrating the ability of this method to
discover superconducting compositions see Fig. 4a). It has also
been used to optimize the synthesis of a topological Kondo
insulator SmB6 in a thin-film form113.

A significant hurdle in the more widespread use of high-
throughput methods is the need for special characterization tools,
often required for the exploration of many classes of quantum
materials. For instance, for detecting topological states, one
typically turns to angle-resolved photoemission spectroscopy
(ARPES) to look for their signature in electronic structure114.
Antiferromagnetism—whose role in the superconductivity of
several classes of materials is hotly debated—is best probed using
neutron scattering115. X-ray magnetic circular dichroism has
been used to investigate the electronic structure of quantum spin
liquid α-RuCl3116 These advanced techniques require unique
synchrotron or neutron facilities, and their implementation in the
screening of combinatorial libraries has been limited to
date117,118

The high-throughput approach generates large high-
dimensional datasets, requiring analysis techniques that can
rapidly turn raw data into knowledge with limited or no human
supervision119. This community adopted dimensionality reduc-
tion and data mining techniques early on120–123, gradually
creating a diverse ML toolbox for the rapid digestion of combi-
natorial data124–130. One very common task is to quickly group

(cluster) measurements from different points of a combinatorial
library, and ML algorithms have been routinely applied to a large
number of X-ray diffraction patterns to delineate structural
phases and rapidly construct a composition-structure
relationship120,124,129,130. The authors of ref. 124 took this idea
a step further and used a comprehensive ML algorithm for on-
the-fly analysis of synchrotron diffraction data from combina-
torial libraries to facilitate a search for rare-earth-free permanent
magnets (see Fig. 4b). Unsupervised ML for rapid data reduction
is now commonly being applied to high-throughput character-
ization data from a variety of spectroscopic techniques, including
Raman spectroscopy131, Time-of-Flight Secondary Ion Mass
Spectrometry132, and X-ray photoelectron spectroscopy133.

This close integration of experimental tools and ML can be
considered as the first step towards an emerging AI-driven
paradigm for materials exploration. It relies on active learning—a
branch of AI dedicated to providing a systematic and rigorous
approach for identifying the best experiment to perform to
achieve an objective. This can be either finding the shortest path
toward a material that optimizes some desired properties or
identifying a series of experiments that maximizes knowledge of
the explored space. Recently, materials physicists have begun to
capitalize on active learning to accelerate experimental
research134. For example, active learning has been used to advise
experimentalists on the next best experiment to perform in the
search for various functional materials135–137. Another work
already demonstrated the potential of these methods in the field
of quantum materials: an active-learning framework designed to
discover the material with the highest Tc was evaluated on about
600 known superconductors138. The framework did significantly
better than pure random guessing, highlighting the impact it
can have.

The active-learning algorithms guiding the exploration can
indeed decisively outperform exhaustive experimental approa-
ches, leading to a similar amount of actionable knowledge for
only a fraction of the time and resources. This has profound
implications: with a significant reduction in the number of
iterative experimental runs, it may now be possible to incorporate

Fig. 4 Accelerating experimental discovery processes. a High-throughput methods can be used to perform validation of predicted materials. Visualization
of resistivity vs temperature curves measured at different parts of a Fe-B composition spread. The horizontal range of each curve covers 2–300 K. The
resistivity range for each curve is color coded (reproduced from ref. 141 under the terms of the Creative Commons CC BY license); b On-the-fly analysis of
synchrotron diffraction data124. A snapshot photo from the experiment. The upper screen shows the scanning stage with a thin-film library inside a
beamline hutch. The bottom screen is a laptop, where unsupervised ML of diffraction patterns is carried out after each measurement. The same setup has
also been used to carry out active-learning-based autonomous experiments.
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active-learning-guided tools at synchrotron and neutron facilities
for quick screening of quantum materials libraries in closed-loop
cycles.

However, the examples of active learning discussed above only
provided support for an important but limited set of questions,
leaving the majority of the experimental design, execution, and
analysis to human experts. This situation is rapidly changing, and
truly autonomous experimental systems are beginning to arrive
on the scene. In one study, an autonomous system was used to
control synthesis parameters to optimize carbon nanotube growth
rate139. The Autonomous Research System (ARES) platform
utilized an ML-based system linked to an automated growth
reactor with in situ characterization to learn the optimum growth
conditions.

Autonomous materials exploration can be particularly effective
when coupled with high-throughput experimentation. In a recent
study, a real-time closed-loop, autonomous system for materials
exploration and optimization (CAMEO) was demonstrated on a
combinatorial library.140 The goal of CAMEO is to first map the
structural phase diagram across the compositional landscape and
then use the phase map as a blueprint to optimize a physical
property of interest. It was used to quickly find the optimum
composition of phase change memory materials with the largest
bandgap difference between amorphous and crystalline states
within a Ge–Sb–Te thin-film composition spread. To achieve this,
analysis of ellipsometry measurements from the library and
remotely-controlled synchrotron diffraction were carried out
simultaneously. Combining these two sources of information,
CAMEO discovered a novel composition with phase change
performance superior to known materials in the field, for only
about one-tenth of the time required to measure every point in
the library.

Even more revolutionary AI-enabled systems, designed to help
human scientists in optimizing every step of the research process,
are already being considered and developed. These systems will
coordinate a host of computational and experimental probes to
help efficiently search a vast and mostly unexplored composi-
tional space. The AI “brain” of the system will have access to all
relevant information—results of past experiments, computations
and theory, knowledge of a wide range of materials synthesis
techniques, and measurement instrumentation. It will use this
information to advise researchers which experiments to perform

to maximize the knowledge gain and drastically accelerate pro-
gress. In its ultimate form, fully autonomous laboratories con-
trolled by AI in command of various synthesis and
characterization will orchestrate entire experimental campaigns,
update their knowledge, and continue to explore until the desired
goal is reached (see Fig. 5 for a schematic). These AI “scientists”,
dedicated to the exploration of quantum materials, can help us
finally solve some of the most enduring mysteries of physics.

Outlook
As physicists focus more and more on materials with unusual
properties grounded in many-body quantum mechanics, their
research methods have to evolve. The ongoing revolution in AI is
a great opportunity for the condensed matter physics community,
and ML tools are starting to play an important role in the study of
quantum materials. From accelerating the first-principles com-
putational tools to helping analyze high-dimensional experi-
mental data, these tools have already left their mark on the field.
But even more exciting developments are gradually turning into
reality. Researchers are working on automated research systems
controlled by AI-guided robots. These systems will allow scien-
tists to build penetrating multidimensional pictures of these
complex materials, and at the same time accelerate the search and
discovery process.

Apart from reshaping the experimental process, the use of such
autonomous systems will reduce the many superfluous hurdles
and dramatically lower the effort and time needed for running an
experiment. This will allow scientists to focus on the most chal-
lenging and important parts of the research process, while also
making science more “democratic” and equitable.
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