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c-axis transport in UTe2: Evidence of three-dimensional conductivity component
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We study the temperature dependence of electrical resistivity for currents directed along all crystallographic
axes of the spin-triplet superconductor UTe2. We focus particularly on an accurate determination of the resistivity
along the c axis (ρc) by using a generalized Montgomery technique that allows extraction of crystallographic re-
sistivity components from a single sample. In contrast to expectations from the observed highly anisotropic band
structure, our measurement of the absolute values of resistivities in all current directions reveals a surprisingly
nearly isotropic transport behavior at temperatures above Kondo coherence, with ρc ∼ ρb ∼ 2ρa, that evolves
to reveal qualitatively distinct behaviors on cooling. The temperature dependence of ρc exhibits a peak at a
temperature much lower than the onset of Kondo coherence observed in ρa and ρb, consistent with features in
magnetotransport and magnetization that point to a magnetic origin. A comparison to the temperature-dependent
evolution of the scattering rate observed in angle-resolved photoemission spectroscopy experiments provides
important insights into the underlying electronic structure necessary for building a microscopic model of
superconductivity in UTe2.
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The recently discovered superconductivity in UTe2 [1] is
believed to be a strong contender for spin-triplet Cooper pair-
ing driven by ferromagnetic spin fluctuations, as suggested by
scaling of magnetization data [1], muon spin relaxation ex-
periments [2], and an upper critical field that greatly exceeds
the Pauli paramagnetic limit along all principal axes [1]. A
point-nodal structure in the superconducting gap is evidenced
by studies of thermal conductivity and penetration depth [3],
and the temperature dependence of the Knight shift in nuclear
magnetic resonance is weak, which is consistent with the
degeneracy existing in the spin-triplet state [1,4]. Other fasci-
nating properties including reentrant superconductivity [5,6]
and pressure-induced multiple superconducting phases [7,8]
signal a rich superconducting state in UTe2. Observations
of a split transition in thermodynamic critical temperature
Tc at ambient pressure and the existence of the Kerr effect
at Tc, indicating breaking of time-reversal symmetry in the
superconducting state, point to a two-component order param-
eter, expected in a topological Weyl superconductor [9,10].
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Together with observations of novel surface states [11,12],
magnetic excitation spectra [13–16], and tunability of the
transition temperature and splitting [17,18], the plethora of in-
teresting phenomena in UTe2 will require continued attention
to the details of this fascinating system [19].

To date, the majority of experiments have focused on
elucidating the symmetry and topological class of the su-
perconducting order parameter, or probing the landscape of
proximate ground states, such as magnetism [7,8,21–24].
However, how the Fermi surface forms by the chains of
uranium and tellurium atoms along the a and b axes, respec-
tively, as shown in Fig. 1(a), together with Kondo physics and
f -electron contributions remains an open question. Band cal-
culations seem to depend sensitively on the on-site Coulomb
interaction strength Uint and the role of f -electron physics.
Local density approximation (LDA) calculations suggested
that the normal state of UTe2 is a semimetal [25,26], while
more recent LDA+U calculations find that a insulator-to-
metal evolution can be tuned by the strength of Uint, with two
perpendicular Fermi surface (FS) sheets forming a quasi-two-
dimensional (quasi-2D) FS emerging when Uint is tuned to
∼2 eV [27,28]. Recent angle-resolved photoemission spec-
troscopy (ARPES) experiments at 20 K indeed observed this
2D FS in addition to a more three-dimensional (3D) f -like
pocket surrounding the Z point (Z pocket) [20], as shown
schematically in Figs. 1(b) and 1(c). Importantly, and without
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FIG. 1. UTe2 crystal structure and Fermi surface. (a) Crys-
tal structure of UTe2; a = 4.161 Å, b = 6.122 Å, c = 13.955 Å.
(b) Schematic picture of the rectangular Fermi pockets (shown in
blue) in the a-b plane of the BZ (based on Ref. [20]). (c) Schematic
picture of the Z pocket in the presence of the less dispersive rectan-
gular pocket in the a-c plane of the BZ (based on Ref. [20]).

the need to invoke Uint, density functional theory combined
with dynamical mean-field theory (DFT + DMFT) band cal-
culations in the same study suggest that the two sets of sheets
comprising the quasi-2D FS derive from the U-6d and Te-
5p orbitals of the two perpendicular chains of uranium and
tellurium atoms [Fig. 1(a)], but they fail to predict the exis-
tence of the f -like Z pocket, leaving the role of 5 f electrons
unanswered.

Given the confluence of interaction- and dimension-
dependent contributions to the normal state electronic behav-
ior in UTe2, it is imperative to have an accurate measure and
understanding of the conductivity anisotropy in this system in
order to understand the Fermiology that leads to pairing. Here,
we accurately determine the electrical resistivity along all
primary crystallographic directions in UTe2, focusing on the
so-far elusive c-axis transport behavior in order to help eluci-
date the role of dimensionality and orbital contributions to the
normal state electronics. We compare the measured transport
anisotropy and its temperature dependences with ARPES in
order to better connect peculiar behaviors with specific band
components, providing a consistent picture of transport in

FIG. 2. Electrical resistivity of UTe2 extracted using a gen-
eralized Montgomery measurement technique on two crystalline
samples, including a diamond-shaped sample with b-c plane orien-
tation (sample S1) and a nearly-rectangular-shaped sample with a-c
plane orientation (sample S2). Absolute resistivities are obtained by
extracting principal components of resistivities from a combination
of resistance measurement geometries and numerical modeling (see
SM [29] for more details, including extracted ρc data for sample S2
and sample photos in Fig. S3).

UTe2. Furthermore, our magnetotransport analysis suggests
magnetism as a potential origin of the qualitatively anisotropic
scattering behavior at low temperatures.

Although it is common to study transport anisotropy us-
ing the Montgomery technique [30], which allows extraction
of two components of the resistivity tensor from a single
rectangular-shaped sample, in a highly anisotropic system the
possible misalignment between the sample geometry edge and
crystal axis can lead to spurious results, mixing low- and
high-conductivity channels that introduce large errors when
converting to resistivity. We utilize a generalized (i.e., non-
rectangular) Montgomery technique, where electrical contacts
are placed on corners of a sample with currents directed along
a mixture of principal axis directions, and employ finite ele-
ment analysis to extract the principal components. We present
data from a diamond-shaped sample with b-c plane orientation
(sample S1) and a rectangular-shaped sample with a-c plane
orientation (sample S2). (Details of the transport setup and
considerations, sample geometries, and detailed analysis are
found in Supplemental Material (SM) [29] Secs. I and II.)
By comparing the c-axis components measured in the two
samples, we obtain an accurate absolute measurement of the
c-axis resistivity and rule out the possibility of misinterpreting
its magnitude, which has been a known issue in other quasi-
2D materials [31].

Figure 2 presents the extracted resistivities for all three
primary crystal directions, allowing analysis of the quantita-
tive anisotropy. Our results are qualitatively consistent with
the previous studies reporting ρa and ρb, but quantitatively
different by up to a factor of ∼2 [1,25]. In contrast to the
naive expectations for the quasi-2D Fermi surfaces of UTe2,
the nearly isotropic conductivities as observed in the highly
anisotropic metal in the normal state of Sr2RuO4 [32] can only
be explained by the presence of a much more isotropic Fermi
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FIG. 3. Temperature dependence of ARPES. (a) An ARPES image of the UTe2 6d bands, measured at 20 K along the �-X axis at hν =
74 eV, in normal emission from the [011] crystal face. (b) Temperature (Temp) dependence of quasielastically scattered photoelectrons. ARPES
intensity on the uranium O-edge resonance (hν = 110 eV) was integrated in a region with no visible bands [from k = 0.6 Å−1 to k = 1.0 Å−1].
(c) Momentum distribution curves (MDCs) of 6d band electrons at 25 meV, measured at hν = 74 eV and temperatures of 20, 30, 40, 50, and
65 K, from top to bottom. (d) The feature width from Lorentzian fits (see SM [29] Sec. VII for details) of the MDCs in (c), used for comparison
with resistivity (see text).

surface component. Here, we employ a simple two-channel
Drude model as a start, finding quantitative agreement with
the available ARPES data [20]. In this model, we assume that
the conductivity consists of two conduction channels, one 2D
and one 3D, corresponding to the U-6d and Te-5p derived
FS sheets and the isotropic highly U- f -weighted Z pocket,
respectively, as depicted in Fig. 1. The conductivity along the
a axis is composed of two contributions:

σab = σ2D + σZ . (1)

Since the rectangular pockets are weakly dispersive in the
c-axis direction, we ignore their contribution and only con-
sider the Z pocket, i.e., σc ≈ σZ . Using the Drude picture for
transport, we can compare the transport data with ARPES
data using an equation for the contribution of the 2D-like
rectangular pocket along the a-axis direction,

σ2D ≈ 1/ρa − 1/ρc = 2n2Deμ2D, (2)

where n2D, m2D, and μ2D refer to the carrier density, effective
mass, and mobility of the 2D Fermi surfaces, respectively. The
factor of 2 originates from the fact that two rectangular pock-
ets exist in the Brillouin zone (BZ). We estimate the ARPES
parameters [right side of Eq. (2)] from the uranium 6d band
dispersion, which predominantly contributes to the transport
along the (U chain) a axis (see SM [29] Sec. VI for details).
By comparing these two experiments, we estimate a mean free
path l2D ≈ 19 Å at 20 K, or a mobility of 1.8 cm2/(V s). Using
the momentum distribution curves (MDCs) from ARPES at

20 K [see Fig. 3(d)], the mobility is 2.3 cm2/(V s), in excellent
agreement. We will discuss the temperature evolution of the
MDC below.

Continuing the analysis, the Z-pocket mobility is 4.3
cm2/(V s) at 20 K. At lower temperatures, by extrapolating
the T 2 behavior to the zero-temperature limit, we find an
improvement of mobility of 29.1 and 26.9 cm2/(V s), for
the 2D-like Fermi surface and the Z pocket, respectively.
We note that this two-channel model does not capture dif-
ferences between the a- and b-axis resistivities since we have
assumed that the quasi-2D channel is isotropic in the ab plane.
Further corrections to the two-channel model, capturing this
anisotropy difference, can be made by adding corrugations
of the 2D-Fermi surface along the c-axis direction or the
anisotropy of the Z pocket. We await future ARPES studies
estimating the anisotropy of the Z pocket in all three directions
and the quasiparticle lifetime along the Te-chain b direction to
resolve this.

Next, we discuss the temperature dependence of the re-
sistivities, focusing on three regimes. Although resistivities
for all three axes undergo a large drop upon cooling to low
temperatures, there is a qualitatively distinct temperature de-
pendence between c-axis transport and that in the a-b plane.
As shown in Fig. 2, the resistivities start from a relatively
high magnitude and drop rapidly below ∼50 K or less, with
a qualitative difference found in ρc, which drops at lower
temperatures than the other two components. Particularly in
the intermediate-temperature regime, where the behavior of
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ρ(T ) is richest, we compare with the temperature-dependent
ARPES data.

High temperature (50 K � T � 300 K). At high tempera-
tures, the most apparent contrast in resistivity behavior is in
the metalliclike (dρ/dT < 0) vs nonmetalliclike (dρ/dT >

0) behavior of ρc vs ρa and ρb, respectively. The weak increase
of ρa and ρb upon cooling is attributed to single-ion Kondo
behavior preceding the development of lattice coherence (al-
though extracting a Kondo temperature is problematic due to
its weak behavior, as detailed in SM [29] Sec. III). In contrast,
ρc instead exhibits a metalliclike decrease on cooling. While
definitely not Kondo-like, its weak temperature dependence
also suggests that it is not simply a linear behavior due to
electron-phonon scattering, suggesting that a single scattering
mechanism may not be dominating. We note also that all three
resistivities in this temperature window are larger than 0.3
m� cm, which for typical metals is approaching the Anderson
localization regime [33] as well as the Ioffe-Regel criterion
for a highly anisotropic system (see SM [29] Sec. III for
more details), but point to the lack of any obvious hopping
conduction to rule out this scenario.

Intermediate temperature (5 K � T � 50 K). In the
intermediate-temperature regime, the richest qualitative
anisotropy is apparent in the temperature range of ∼50 K,
where ρa and ρb exhibit the classic drop in magnitude upon the
onset of Kondo coherence, while ρc begins to increase upon
cooling, rising to a peak at 14 K before dropping precipitously.
In the following, we compare the temperature dependence of
resistivity with that of ARPES spectra, finding consistency
with a Kondo lattice coherence picture for a-b plane transport,
and investigate magnetotransport and magnetization data to
help elucidate the c-axis behavior.

Figure 3 presents an analysis of ARPES temperature de-
pendence, with a representative spectrum along the �-X axis
shown in Fig. 3(a). Integrating the region where dispersive
bands are absent, we study the temperature dependence of
the quasielastically scattered photoelectrons, as shown in
Fig. 3(b). The peak within 0.1 eV of the Fermi level, which
is cut by the resolution-convoluted Fermi function, follows
a typical temperature evolution as coherence develops. As
shown in the inset of Fig. 3(b), tracking the peak magnitude
as a function of temperature, an inflection can be seen around
50 K, where ρa and ρb rapidly drop. This is consistent with
the formation of Kondo coherence near 50 K.

To make further connection to transport, we focus on
energies close to the Fermi energy (ideally, E − EF � kBT ;
however, this energy window is not adequately resolved in
the measurement, so we use the closest available energy that
can be analyzed). From the MDCs at 25 meV binding energy,
we find the width of the Lorentzian fits (feature width) to be
changing with temperature, as shown in Fig. 3(d). Note that
the fitting uncertainty is greater at higher temperatures due to
irregular background intensity (see SM [29] Sec. VII for more
details). We can interpret that the temperature dependence
of the ARPES feature width and the electrical resistivity is
mainly governed by the temperature dependence of the mean
free path of the carriers. The key finding is that the tem-
perature evolution of the ARPES 6d band feature width, as
shown in Fig. 3(d), is qualitatively consistent with the steadily
decreasing behavior of ρa and ρb on cooling below the Kondo

FIG. 4. Low-temperature resistivity of UTe2, exhibiting Fermi
liquid behavior for all three crystallographic orientations. Data were
obtained from four-wire measurements on bar-shaped samples (sam-
ples S3, S5, and S6).

coherence temperature and inconsistent with the rising behav-
ior of ρc in the same temperature range. Taken together with
the behavior of the quasielastically scattered photoelectrons,
this confirms the connection between the Kondo mechanism
and a-b plane resistivity and the anomalous distinction of
c-axis transport.

Interestingly, the existence of an unusual qualitative
anisotropy in resistivity temperature dependence has been
observed in other systems such as UCoGe [34] and is a well-
known phenomenon in highly two-dimensional metals such
as Sr2RuO4 [32] and cuprates, where its origin is still highly
debated [35]. In contrast to the two-dimensionally anisotropic
systems, c-axis transport in UTe2 is nearly equivalent in mag-
nitude to its b-axis counterpart in this regime, suggesting
that other qualitative anisotropic scattering mechanisms must
be at play. Further below, we discuss an analysis of mag-
netotransport and magnetization that suggests magnetism is
responsible.

Low temperature (Tc < T � 5 K). Upon cooling, it is not
clear how the two-channel model discussed above evolves
below the rich anisotropic features at intermediate tempera-
tures, but all three resistivities indicate the realization of a
heavy-Fermi-liquid-like state at low temperatures, decreasing
substantially and approaching a saturating behavior with a
T 2 dependence as shown in Fig. 4. (Note that bar-shaped
samples are used for this analysis, using only sample data that
agree with our generalized Montgomery technique measure-
ments.) This is surprising, in light of experimental evidence
for strong spin fluctuations [2] and quantum critical scaling
[1], often associated with anomalous (i.e., non-Fermi liquid)
scattering behavior. The T 2 coefficient A, which is considered
a measure of the strength of electron-electron interactions, is
indeed enhanced in UTe2 as expected from the moderately
large electronic density of states observed in the heat capacity
[1], with values of 0.76, 2.56, and 5.03 μ� cm/K2 for ρa, ρb,
and ρc, respectively. The fact that all three coefficients are
enhanced suggests that, however the band structure evolves
through hybridization, all three conductivity components
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FIG. 5. Magnetotransport results at 14 T. (a) ρa vs temperature for both fixed at 0 T (in black), H ‖ a at 14 T (in red), and H ‖ b at 14 T (in
blue). Data were taken using bar-shaped sample S7. (b) ρc vs temperature for both fixed at 0 T (in black), H ‖ a at 14 T (in red), and H ‖ b at
14 T (in blue). Data were taken using bar-shaped sample S3. (c) MR vs temperature and �Ma/Ha. Field is applied along the a-axis direction.
(d) MR vs temperature and �M/Hb. Field is applied along the b-axis direction. Comparison of magnetoresistance for both ρa and ρc samples
and �M/H . Magnetoresistance (MR) is defined as MR = [ρ(14 T) − ρ(0 T)]/ρ(0 T) and �M/H = χCW − M/H (14 T), where χCW is the
Curie-Weiss susceptibility fitted at high temperatures.

entail heavy band characteristics. Furthermore, with the heavi-
est component along the c axis (by a factor of 6.6 as compared
with ρa), the anisotropy also evolves strongly as compared
with a factor of ∼3 between the c- and a-axis resistivities at
20 K. Lower-temperature ARPES experiments will help shed
light on this evolution.

Magnetotransport. To investigate the nature of the c-axis
peak, we use field-orientation-dependent magnetoresistance
(MR) as a probe of scattering anisotropy, focusing on whether
MR exhibits a dependence on current or field direction. In
UTe2, uranium atoms form chains along the magnetic easy
axis (a axis), with nearest-neighbor ions forming ladder rungs
parallel to the c axis. We therefore compare the response
of ρa and ρc MR with fields applied both parallel (H ‖ a)
and perpendicular (H ‖ b) to the uranium chains (other field
orientations are presented in SM [29] Sec. V), expecting an
anisotropic current response similar to the temperature depen-
dence. Surprisingly, we find a nearly isotropic suppression of
resistivity (i.e., negative MR) for both ρa and ρc with fields
applied along the magnetic easy axis (a axis). As shown in
Fig. 5, a negative MR is observed with H ‖ a for both resistiv-
ities up to Kondo coherence, not only, notably, for the peak in
ρc, but also for the broad inflection in ρa(T ). For H ‖ b, both
ρa and ρc exhibit a small positive MR at the lowest tempera-
tures with a crossover on warming. As shown in Figs. 5(c) and
5(d), the normalized MR shows this comparison more clearly,
suggesting that the MR response does not depend heavily on
the current direction, but rather mostly on the magnetic field
orientation. Similar results have been obtained for UCoGe and
ascribed to magnetic fluctuations [36]. Together with other
reported observations, we take these results as evidence for

the c-axis peak originating from a change in the magnetic
spectrum.

An important reference is the magnetization at high fields.
A Curie-Weiss (CW) susceptibility behavior, M/H = χCW,
was observed in UTe2 at high temperatures for all three field
orientations [1], consistent with the behavior of a Kondo
lattice system above its coherence temperature. However, at
lower temperatures, deviations from CW behavior occur, with
M/H showing a maximum near 35 K for H ‖ b and an in-
flection point near 10 K for H ‖ a [1], with both features
persisting to higher fields (see SM [29] Sec. V for all field
orientations and different magnitudes). These features are
comparable to those observed in our MR data. To empha-
size this, we compare MR to the deviation of susceptibility
from the CW behavior by plotting the difference (�M/H =
χCW − M/H) for both a- and b-axis directions, shown in
Figs. 5(c) and 5(d). We do this analysis for two reasons. First,
this subtraction emphasizes the subleading-order temperature
dependence that only shows up as a mild slope change in the
raw M/H data. Second, the sign of �M/H indicates whether
the susceptibility is changing faster or slower than the high-
temperature CW behavior. For example, the CW behavior will
saturate near the coherence temperature of a standard Kondo
lattice, and therefore �M/H will be positive. For H ‖ b, we
find that �M/H is indeed positive, but in contrast we find that
�M/H is negative for H ‖ a. The maximum in b-axis magne-
tization (i.e., �M/H > 0) that occurs near the onset of Kondo
coherence has been associated with an energy scale from the
metamagnetic transition at 35 T [37,38], while the inflection in
a-axis magnetization near 10 K (i.e., �M/H < 0) appears to
be dominated by easy-axis magnetism of the uranium chains
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[1]. Interestingly, the comparison of MR and �M/H reveals
a qualitative similarity in both the temperature trend and sign
for both field orientations, especially the ∼10 K negative peak
feature for H ‖ a. This suggests that the change in scattering
responsible for magnetotransport is predominantly magnetic
in nature for both current directions.

Overall, the qualitative and quantitative differences ob-
served between a-b plane and c-axis transport, as well as the
crossovers in resistivity anisotropy as a function of tempera-
ture, suggest that (1) at least two different transport channels
are responsible for transport in different directions and (2)
the scattering mechanism(s) involves energy scales that are
quite sensitive to the temperature range under study. In ad-
dition, from magnetotransport studies, (3) the peak in ρc

and minima in MR and �M/H for H ‖ a occur at nearly
the same temperature, ∼10 K, which is quite different from
the Kondo coherence temperature observed in ρa and ρb in
Fig. 2. All of these observations can be explained by a scat-
tering mechanism with a distinct ∼10-K energy scale that is
magnetic (non-Kondo-like) in nature. For instance, this tem-
perature is very close to the onset of quantum critical scaling
of magnetization, with M/T ∝ H/T 1.5 [1], suggesting that it
coincides with a change in the fluctuation spectrum, while
high-temperature Curie-Weiss behavior indicates that antifer-
romagnetic interactions cannot be ignored. Details about the
magnetic excitation spectrum are emerging [13–15,39] but
may be challenging to interpret in a simple spin fluctuation
picture due to the evolving heavy-fermion band structure
[16]. Interestingly, nuclear magnetic resonance experiments
[40,41] have revealed a divergence in the spin-spin relaxation
rate 1/T2 only for H ‖ a, also suggesting the development
of spin fluctuations below ∼20 K and proximity to a (quasi)
long-range ordered phase. In addition, given the absence of
long-range magnetic order [2], the temperature scales ob-
served in ρc(T ), the MR, and the magnetic response suggest
a magnetic crossover scale that dominates the c-axis transport
channel.

This work provides a definitive measure of the electrical
resistivity along all three primary axes of UTe2 in the nor-
mal state. Given the expectation of strong anisotropy from
electronic structure calculations, the magnitude of the c-axis
resistivity is surprisingly comparable to that of the a- and
b-axis resistivities in the entire temperature range but exhibits
a qualitative difference in behavior at temperatures below the
onset of Kondo coherence. We understand this behavior as
originating from electronic bands with distinct dimensional-
ity, as well as a scattering mechanism that is intimately tied
to a crossover in the magnetic spectrum near 15 K. Adding
valuable information to our understanding of the normal state
of UTe2, this information will be important for understanding
the electronic structure and for building a microscopic theory
of superconductivity.
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I. EXPERIMENTAL DESIGN

A. UTe2 Crystal Growth

Single crystals were grown identical to the method used in our previous studies such as

Ref. [1] and Ref. [2]. UTe2 crystals were grown by chemical vapor transport technique.

Iodine was used for the transport agent. Elements of uranium and tellurium were prepared

with a 2:3 atomic ratio in the quartz tube with the iodine of 3 mg/cm3. This quartz ampoule

was gradually heated in the furnace and then a temperature gradient between 1060 C to

1000 C was maintained for 7 days. The furnace was then cooled to room temperature.
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FIG. 1. (Color) Various attempts to measure the c-axis resistivity. The resistances are normalized

with the value at the peak that is located 12-14 K. Note that identical samples show different

behavior above the peak temperature when the geometry is different. The ”Circular Disks” sample

has an inner radius is 170 µm, outer radius is 270 µm, and the thickness is 435 µm.

B. Difficulty Estimating the c-axis Resistivity

In Fig. 1, we show some of our early attempts for finding ρc. The data is normalized to

the resistance at the peak, particularly two samples that are also presented in this work.

The plots that are labeled ’bar’ are from standard four wire measurements on a bar-shaped

sample. The plots that are labeled ’Circular Disks’ are electric current flowing through

the c-axis by two circular disks patterned on opposite ab planes. The plot labeled ’nearly

rectangular’ is a resistance measurement from electrodes placed at the corners of a nearly

rectangular sample (same as R1 configuration in Fig. (3)). In this figure, we see that even for

identical samples, the resistance enhancement from the peak to high temperatures depends

on the geometry of the sample and the position of the electrodes. From this, one can see

that finding ρc accurately is difficult.

C. Preparation of the Electrodes

Preparing reliable contacts for resistivity measurements of UTe2 is difficult. If the elec-

trodes are prepared by using silver paste or silver epoxy on a fresh surface of UTe2, two-

terminal resistance values (mainly contact resistances of the two electrodes) easily degrade
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from a couple of Ωs to a 100kΩ - MΩ range within hours of exposure to ambient conditions.

This is most likely because the native oxide layer forms rapidly on the surface. One alterna-

tive strategy is putting highly conductive metal contacts (e.g. gold or silver) by lithographic

methods. Since this also requires a rapid preparation before the sample is inserted into the

vacuum chamber of the metal evaporator, it is difficult to convince that the metal pattern is

touching the sample surface uniformly. To the best of our knowledge, we find soldered con-

tacts provide the smallest contact resistance that is stable for many hours during exposure

to ambient conditions. However, soldered contacts are difficult to define precise electrode

geometries. To avoid this complication, we put contacts on the edges as small as possible,

similar to a Van der Pauw or Montogomery geometry. The contacts are first made by alloys

of indium solder as small as possible, and the wires were connected by silver paste on top of

the solder for better controllability. This ensures that the contact size can only be smaller

than the visible contact but not larger. All two-terminal resistance values were in the several

0.1 - 1 Ω Ohmic range so that the distortion of the voltage signal by common-mode from

the preamplifier is not an issue for measuring the normal state resistance of UTe2.

D. Sample Geometry

For sample S1, the top and bottom surfaces are bc planes. The edges of this sample are

all created by natural cleavage, and directions are diagonal to ±b⃗- and ±c⃗-direction (e.g.,

b⃗± c⃗), as shown in Fig. 3 (a). For sample S2, we prepared a Montgomery-like sample where

the top and bottom surface shapes are nearly rectangular. The top and bottom surfaces are

ac planes by polishing as shown in Fig. 3 (b). This sample was polished in all six directions.

If the samples are sufficiently thin, a resistance measurement in sample S1 would depend

on the resistivity of c (ρc) and b (ρb), and sample S2 would depend on the resistivity of c

(ρc) and a (ρa). As shown in Fig. 2, magnetization measurements along the field direction

where a-, b- and c-axis is predicted from those edges are consistent with the previous report

in terms of shape and magnitude[1].
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(a)

(b)

FIG. 2. (Color) Measurement of magnetization. The samples are mounted along the field directions

indicated in the arrows of Fig. 3. (a) Sample S1. (b) Sample S2.

E. Generalized Montgomery geometry

The Montgomery method[3] is a standard method for finding the anisotropy of the con-

ductivities when the sample is prepared as a perfect rectangular shape, where the edges are

exactly aligned with the crystallographic axes[3, 4].

Today, thanks to the improved computing power, irregular-shaped geometries can be

simulated easier than before. Still, although numerical calculations can find the resistance

values of a given set of conductivity tensor components for a given geometry, the oppo-

site task (finding the conductivity tensor components from a set of resistance values) is

challenging. We introduce a scaling formalism[5] for two conductivity tensor components.

Consider a simple case where the conductivities in all three directions are identical to σ

(e.g., cubic crystal). The resistance is inversely related to σ, and therefore

5



R = C/σt, (1)

where C is a constant that depends on the transport geometry and electrode positions,

and t is the thickness. Although it is very obvious, notice that the R always scales with

1/σ. Because of this relation, an experimentalist is often tempted to report the ratio of

resistances at different conditions, such as temperature for example. This is because such

relation, independent of the details of the measurement

R(T )

R(T = 300K)
=

σ(300K)

σ(T )
(2)

is justified.

For resistance of an anisotropic crystal, it can be calculated by integrating Ohm’s law,

J = σ̃E over the geometry of the sample with the appropriate boundary conditions, where

σ̃ =


σa 0 0

0 σb 0

0 0 σc

 , (3)

and σa, σb, and σc, are the conductivities along the a-, b-, and c-axis of the crystal.

Resistance, in general, is then a function of all of these conductivities:

R = R(σa, σb, σc). (4)

If the geometry is sufficiently thin in the c-axis direction, the resistance does not depend

on σc. We can express resistance as:

R = r(σa, σb)/t. (5)

The value of r(σa, σb) depends on the transport geometry and the position of the contacts

in addition to σa and σb. In order to find two unknown conductivities, σa and σb, at least

two independent resistance measurements, say R1 and R2, from different configurations are

required. As mentioned before, the difficulty is that unless an analytical form is known

finding the conductivity by an inverse mapping of two parameters, (σa, σb) = (R−1
1 , R−1

2 )

requires a tedious work and heavy numerical computing. In addition, Eq. (1) cannot be

assumed and therefore the resistance ratio (R(T )/R(T = 300K)) may not be as useful

unless the current is flowing only in one direction.
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Still, a slightly less obvious scaling property than the isotropic σ case holds. This scaling

property is useful for finding the unknown σa and σb. It can be easily convinced that Eq. (5)

can be expressed alternatively as:

R =
f(x = σa/σb)

σbt
. (6)

From Eq. (6), we have reformulated this problem of finding the conductivity ratio, x (=

σa/σb) and σb instead of finding σa and σb. We can first attempt to find x. For convenience,

we take the ratio of the two resistances, R1 and R2, and define g by

g(x) =
R1(x)

R2(x)
=

f1(x)

f2(x)
. (7)

Numerical simulations can provide g(x) by an iterative process of varying x. we can later

directly compare this with the experimental resistance ratio.

We summarize the procedure to find the two resistivites (σa and σb) from two resistance

measurements (R1 and R2).

• Step 1: From the experimental measurements of R1(T ) and R2(T ) values, calculate

R1(T )/R2(T ). We define this quantity as g(T )e.

• Step 2: From numerical simulations of f1 and f2, we define the ratio of the two as

g(x)n.

• Step 3. From g(x)n in Step 2, find the inverse function, x(g)n for a wide range of g

values. By definition, this is identical to finding σa/σb as a function of R1/R2.

• Step 4. Use the experimental values of R1/R2 as a function of temperature from

Step 1 to the numerically found x(g)n (from Step 3) and find σa/σb as a function of

temperature.

• Step 5. Since x(T ) is found from Step 4, from Eq. (6), use f1(x(T )) and R1(T ) to find

σb(T ). (Note: alternatively, f2(x(T )) and R2(T ) can be used).

• Step 6. Since σb(T ) is found, compare this to x(T ) from Step 3 and find σa(T ).

In the following section, we use this technique and extract the resistivities in all three

directions.
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II. EXPERIMENTAL ANALYSIS

A. Resistivity Result

In this section, we describe in detail how the resistivities in all three directions were

found. Also, we discuss the validity of our analysis.

The samples are shown in the insets of Fig. (3) (a) and (b), with the electrodes labeled.

we label the four-terminal resistance as Vk,l/Ii,j, where i, j, k, and l are the labels of the

electrodes. A sample that consist of four electrodes can provide three independent four-

terminal resistance measurements. Each resistance measurement, R1, R2, and R3 are shown

in Fig. (3) (a) for S1 and Fig. (3) (b) for S2. For both samples S1 and S2, we find that R1,

R2, and R3 have different temperature behaviors. This is because each resistance configu-

ration sweeps the current and measures the voltage drop in different regions of the sample,

emphasizing the two resistivity (or conductivity) components differently.

We use the scaling formalism to extract the resistivities from measured resistance. First,

for the numerical simulations to be useful, we solve R1, R2, and R3 with iterations of x

(x = σb/σc for S1 and x = σa/σc for S2). The results are shown in Fig. 4 (a) (for S1) and

(b) (for S2).

Interestingly, even before extracting the resistivities, by comparing the numerical results

and the experimental resistance data at a glance, we find that the c-axis resistivity is com-

parable in magnitude to the other resistivities. At room temperature, for example, sample

S1 is R1 < R2 < R3, this implies that f1 < f2 < f3. In Fig. (4) (a), the allowed range of

x in this order is 0.4 - 4. This already tells us that the c-axis resistivity cannot be many

orders of magnitude larger than the a-axis resistivity. Similar arguments can be made at

different temperature ranges for both samples. Note that for S2, f3 changes sign at x ∼ 2 in

Fig. (4) (b). Indeed, R3 changes sign at ∼ 35 K. This again indicates the c-axis resistivity

is only about twice as large than the a-axis resistivity.

Our three measurements per sample provides a sanity check of our resistivity results.

Ideally, since only two resistance measurements are required for the extraction of two re-

sistivities, three resistance measurements provide resistivity extractions in three different

ways (R1 and R2, R1 and R3, or R2 and R3). The possible disagreement of the the three

extracted resistivities would indicate the reliability (e.g., homogeneity of the sample or how

8
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FIG. 3. (Color) Sample configuration and resistance vs. temperature from each configuration. (a)

Resistance vs temperature of S1 sample for three different configurations. Inset: Sample S1 in the

bc plane. Sample thickness is 290 microns. (b) Resistance vs temperature of S2 sample for three

different configurations. Inset: Sample S2 in the ac plane. Sample thickness is 160 microns.

accurate the sample geometry information was used in numerical simulation) of this study.

We plot ρa and ρb in Fig. (5) (c) and ρc in Fig. (5) (d), both from samples S1 and S2. The

disagreement of the three different resistivity extractions are shown as an error bar (as error

of mean) in each of the plots. From the size of the error bars, we believe the uniformity

of the samples are good enough to represent the resistivities, including the absolute mag-

nitude. Since we gain confidence from these two measurements from S1 and S2, we also

plot together a ρc prepared as a bar-shaped sample (S3) that shows similar behavior as the

previous sample results. The agreement especially between S3 and S2 is good once the data

has been adjusted by 10 percent. We believe this difference is within the error of the contact

9



(a)

(b)

FIG. 4. (Color) Solving numerically f1, f2, and f3 varying x. (a) For geometry S1 in the bc plane.

(b) For geometry S2 in the ac plane. Note that f2 changes sign, as indicated with an arrow. The

negative values are plotted as -f2 (dotted line).

position and sample dimension measurements.

One detail to note is that the slight variations of the ρc from S1 and S2 have a difference

in slope at temperatures above the peak. Since the size of the error bars in ρc from S1 is

smaller than that of S2, and also the misalignment from the true crystal axis and the edges

of the geometry is more reliable in S1 since its edges are unpolished, we present ρc in the

main text.

Note that the shape of S2 can be approximated as a rectangle. Assuming the sample shape

is a perfect rectangle, we find the resistivities using the standard Montgomery formula in

the following section. We find the resistivities are also in good agreement with the numerical

extraction results.
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(a)

(b)

FIG. 5. Resistivity results from three samples. (a) ρa from sample S2 and ρb from sample S1. (b)

ρc from sample S1, S2, and S3.*The resistivity of S3 was adjusted by a 10% magnitude change

(multiplied by 1.1) from the estimated geometric factor by length, width, and thickness. The error

bars are error of mean among three different resistivity extraction results.

B. Comparison of Numerical vs. Montgomery formula for Sample S2

Since sample S2 is roughly rectangular shape, it is worth to compare the resistivities found

from numerical simulations with the resistivities estimated from the standard Montgomery

formula.

As mentioned before, an analytical approximation is available for the Montgomery

formula[4, 6]. Here, only R1 and R2 is used. If the length of the rectangular along the

c-axis and a-axis is l′c and l′a, respectively, and the thickness is t, the resistivity along the

c-axis is approximately[4, 6]

ρc ≈
π

8
(
tl′a
l′c
)
lc
la
sinh(π

la
lc
), (8)

where
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FIG. 6. (Color) Resistivity along the c-axis and a-axis from S1. The black lines are from numerical

analysis. The red lines are from the Montgomery formula (using Eq. (8) and Eq. (9)).

la
lc

=
1

2
[
1

π
ln
R2

R1

+

√
(
1

π
ln(

R2

R1

))2 + 4]. (9)

Resistivity along the a-axis can be found trivially by interchanging l′a and l′c , la and lc,

and R1 and R2. We plot together the resistivity converted from numerical analysis and

the Montgomery formula in Fig. 6. The results from two different methods provide a good

agreement (black is from numerical analysis and red is from the Montgomery formula). This

is another verification that our resistivity conversions are reliable. Lastly, we compare the

c-axis resistivity result to R1, normalized to the peak resistivity value. It is interesting to

note that the raw data from R1 (in a blue dotted line) results in a larger resistance ratio

(R(T = peak)/R(T = 300K)) when compared to the room temperature value. However,

our analysis shows that this is a result of a mixture of the higher conductivity along the

a-axis.

III. FITTING THE TEMPERATURE DEPENDENCE OF RESISTIVITY AT

HIGH TEMPERATURES

In this subsection, we fit the high temperature region of resistivity, where the temperature

dependence is dρ/dT < 0. We first try fitting the Kondo scattering mechanism in the dilute

limit (single-ion limit). We next consider the possibility of variable range hopping, which

is expected in the localization regime. In short, we rule out the possibility of hopping

conduction. The Kondo scattering mechanism can be a possible scenario, but the range of
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FIG. 7. (Color) Attempt of resistivities comparing with the numerical renormalization group

(NRG) analysis. One can see that the range of fitting is small.

resistivity magnitude change is too small, and therefore we cannot find a reliable Kondo

temperature.

• Kondo Scattering

In a Kondo lattice at high temperatures, where coherence has not developed to form

a Fermi liquid, we can think of the system as conduction electrons interacting with

localized magnetic impurities. Therefore, we consider the functional form of the tem-

perature dependence of single impurity Kondo scattering. When the temperature is

much greater than the Kondo temperature (T ≫ TK), a logarithmic temperature de-

pendence is expected, i.e., ρ(T ) ∝ − ln(T ). When the temperature is much below the

Kondo temperature (T ≪ TK), the temperature dependence becomes ρ(T ) ∝ −T 2.

Numerical renormalization group (NRG) is a powerful way to capture both tempera-

ture ranges. In the NRG formalism, resistivity, ρ(T ), can be expressed as a scalable

function, f(T/TK) [7–9]. In our resistivity results, the high-temperature regime of

ρa and ρb can be thought as a weak logarithmic temperature dependence. In addi-

tion, the slight upturn above the ∼ 14 K peak of ρc can be thought of as a possible

ρ(T ) ∝ −T 2 dependence. However, this range of change is too small. Also, the slight

upturn above the ∼ 14 K peak in ρc is the region where there is a sample dependence

that was dicussed previously. We show an attempt of our resistivity data on top of

the fK(T/TK) function when TK = 80 K in Fig. (7)[8, 9].
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FIG. 8. Zabrodskii plot for investigating hopping conduction transport.

• Hopping Conduction

As mentioned in the main text, for large resistivities (ρ > 0.1mΩ, dρ/dT < 0, and

expected lower dimensionality Fermi surfaces, transport in the localization must be

considered. In the localization regime, one expect variable range hopping (VRH)[10].

The functional form of resistivity in the VRH regime is:

ρ(T ) ∝ exp(T0/T )
p, (10)

where p is the power that depends on the detail of the theoretical model that ranges

from 1/4 to 1/2.

An instructive way to visualize the power, p, of VRH is using the Zabradskii plot[11].

We briefly introduce the method. First, we introduce a functional form, w:

w = − ∂ ln ρ

∂ lnT
. (11)

If the resistivity follows a functional form of Eq. (10),

w = p× (
T0

T
)p. (12)

If we plot ln(w) vs. lnT , a linear slope is −p. Therefore, for VRH, we would expect

a linear plot with a negative slope. In Fig. (8), we plot the Zabradskii plot of ρa and

ρb above ∼ 50 K. We see that both ρa and ρb do not have a negative slope.
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IV. MAGNETIZATION ANALYSIS

In the main text, we compared transport data to magnetization. One of the important

questions that first need to be answered is whether our tranport results can be explained

by a standard Kondo lattice or not. To answer this question, an important reference to

compare with is magnetization (M⃗). In a standard Kondo lattice, M/H, in the linear

response regime, we expect the following:

• Above the Kondo temperature (T ≫ TK), a Curie-Weiss susceptibiltiy:

M/H = χCW =
c

T + θ
, (13)

where c is a prefactor.

• Below the Kondo temperature (T ≪ TK), a constant susceptibility:

M/H = χ ∼ constant. (14)

All three directions obey Curie-Weiss behavior at high temperatures. In Fig. (9) (a),

we show (M/H)−1 vs. temperature for different magnetic field directions and fixed field

magnitudes. The linear behavior above ∼ 100 K implies a Curie-Weiss behavior since:

(M/H)−1 = χ−1 ∝ T + θ. (15)

We find θ for the a-axis to be -48.68 K. We find θ for the b-axis as -111.37 K and c-axis

to be -112.93 K. The b- and c- axis may share the same θ value, as the fitting values are

very close.

Although all three directions fit well with a Curie-Weiss susceptibility, the low temper-

ature behavior neither follows the Curie-Weiss nor a constant susceptibility value. This

implies that the magnetization data at low temperatures (below ∼ 100K) requires an under-

standing beyond a standard Kondo lattice model. Below ∼ 10 K, it is well known that M/H

suppresses greatly in the a-axis field direction[12], and even follows a scaling behavior that

may be originating from the vicinity of ferromagnetism[1]. We would like to compare our

electrical transport results with such non-Kondo behavior contribution of magnetization.
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(a)

(b)

FIG. 9. Magnetization data as a reference. (a) (M/H)−1 vs. temperature. (b) ∆M/H vs.

temperature.

This non-Kondo, or non-Curie-Weiss susceptibility, contribution of M/H can be thought

as a subleading order temperature dependence. In order to emphasize this contribution, we

conveniently substract the data from the Curie-Weiss susceptibility. We define ∆M/H as:

∆M/H = χCW −M/H, (16)

where χCW = c/(T + θ). Another important note is that ∆M/H > 0 should be expected

in a standard Kondo lattice since M/H is constant below the Kondo temperature.

We present ∆M/H vs temperature for all three directions in Fig. (9) (b). We first

comment on the sign of ∆M/H. When the magnetic field is directed along the a- and c-

axis, we find ∆M/H < 0, opposite to a Kondo lattice behavior. When the magnetic field is

directed along the b-axis, we find ∆M/H > 0. Next we comment on the field dependence.

∆M/H for both fields along the a- and c- axis have a field dependence, whereas the data
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for field along the b-axis have a very weak field dependence. ∆M/H for field along the a-

and c-axis, both have peak positions around ∼ 10 K, similar to the positions of the peak

position of MR when the field is along the a- and c- axis and resistivity along the c-axis. In

the following section, we describe the details of MR in all three directions.

V. MAGNETOTRANSPORT ANALYSIS

In this section, we explain our work of magnetotransport in more detail. In magneto-

transport in the normal state of UTe2, negative magnetoresistance (MR) is observed in a

wide temperature range and field directions. Particularly, we notice that ρc peak near 14 K

suppresses greatly by this negative MR when the field direction is along the a-axis.

As a reference, a well-understood source of negative MR in a metallic system is scattering

by magnetic impurities.

In the small field limit, the approximate form of resistance as a function of magnetic field

would be in the T → 0 limit is[13]:

R ≈ R0(1− (
π

2
M)2) ≈ R0(1− 0.395

H2

T 2
K

) (17)

Of course, in our case of UTe2, we are not dealing with magnetic impurities in the dilute

randomly distributed. We are dealing with a Kondo lattice. In this case, we can think a

similar qualitative behavior is expected at temperatures much higher than the coherence

temperature. In UTe2 normal transport, negative MR is also observed at low temperatures

when the coherence is expected to develop. In this case, the above negative MR may not be

applicable.

An important component to understand magnetic aspects of UTe2 is the configuration

of the uranium atoms within the unit cell. For example, the magnetic easy axis of UTe2 is

along the a-axis due to the uranium chains along that direction. The hard axis is the b-axis

where tellurium atoms form a chain and not the uranium atoms. In the c-axis, the uraniums

form rungs, so some sort of magnetism is also expected.

As shown in the main text, the peak at ρc suppresses greatly when the magnetic field

is along the a-axis direction. We additionally performed a rotation of the sample while the

magnetic field is fixed, as shown in Fig. (10). Indeed, as expected from the uranium config-

urations, the negative MR is greatest along the a-axis and becomes weaker along different
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FIG. 10. ρc rotated at a fixed magnetic field (5 T, 7 T, 10 T, and 14 T.) near the peak (14 K). (a)

Field rotation is from b- to a-axis. (b) Field rotation is from a- to c-axis.

directions. This rotational magnetotransport study shows that the a-axis dominates. The

other directions can be fitted to even powers of cosines from the a-axis direction. ρc when

H ∥ c is also a negative MR compared to zero field, but much weaker negative MR than the

a-axis.

Fig. (11) (a) ((b)) shows MR vs. temperature at 14 T for ρa (ρc). Note that the MR data

below 5.4 K for ρa, indicated as dotted lines, was alternatively estimated from a Fermi-liquid-

like quadratic temperature dependence fitting parameters: ρ = A(H = 14T )T 2 + B(H =

14T ) since the MR from ρ vs temperature directly was too noisy.

Comparing Fig. (11) (a) and Fig. (11) (b), except for a systematic MR difference of ∼0.1,

ρa and ρc have almost identical MR. This suggests that governing MR behavior does not

depend on the direction of the current direction.

Also, notice that the sign, peak positions, and relative magnitudes of MR at different

field directions are similar to high field ∆M/H (7 T or 14 T data), as shown in Fig. (9).

This suggests that MR originates from a non-Kondo contribution of magnetization.

VI. TRANSPORT AND ARPES COMPARISON

In the main text, we found that the conductivity contribution of the rectangular Fermi

surfaces from transport is:
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(a)

(b)

FIG. 11. (Color) MR vs. temperature at 14 T. (a) MR from ρa. Note that the dotted lines are

estimated from the Fermi-liquid-like quadratic temperature dependence fitting parameters. (b)

MR from ρc.

σrect = 1/ρa − 1/ρc = 1/(0.3mΩ− cm), (18)

We use the size of Fermi surface from ARPES to estimate the carrier density,

nrect =
2f

(2π)2
AFS/ac (19)

, where AFS is the area under the Fermi surface in the ab plane, ac is the lattice constant

in the c-axis direction, and f is the formula unit. From Ref.[14], we use the Fermi wave

vectors ka
F = 0.408×1010/m and kb

F = 0.245×1010/m. We find 2nrect = 1.1 ×1022 1/cm3.

The Fermi velocity is vF = 3.5 ×105m/s and the effective mass is mrect = 1.1me. Using

these parameters together with the resistivity data, we find a mobility of 1.8 (cm2/V-sec).

Alternatively, we can try the inverse feature length as the mean free path (5 ×10−10m) from

ARPES. The mobility in this case is 2.3 (cm2/V-sec). Similarly, the Z-pocket carrier density

can be estimated as 2.4 ×1021 (1/cm3). Using ρc = 0.6 mΩ-cm, we find a mobility of 4.3
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(cm2/V-sec).

Lastly, using ρ(T → 0)a = ρ0 = 15.5µΩ-cm and ρ(T → 0)c = ρ0 = 96.6µΩ-cm, we find

the mobility µ = 29.1 (cm2/V-sec) for the quasi-2D pocket and 26.9 (cm2/V-sec) for the

Z-pocket.

VII. ARPES MEASUREMENTS AND FITTING

ARPES measurements were performed at beamline 4.0.3 at the Advanced Light Source,

with a base pressure better than 5 × 10−11 Torr. The sample was cleaved in situ at T∼20

K, and the [011] easy-cleave face orientation was confirmed by Laue imaging.

Fig. 3 (b) of the main text presents an analysis of intensity that appears due to quasi-

elastic scattering in a momentum region with no band features, as an approximate gauge

of the total density of states (DOS). To obtain this, we have subtracted off an estimate

of the inelastic Shirley background, as shown in Fig. (12) (a). The Shirley background is

approximated as having a derivative that is linearly proportional to the DOS amplitude[15,

16] and is taken to saturate at 90% of the spectral intensity at E = 0.45 eV. The selection of

a 90% threshold represents the assumption that overall DOS is very low at E = 0.45 eV, as

in DMFT modeling. The uncontrolled nature of this parameter makes the post-subtraction

curve unreliable in regions where Shirley background is taken to dominate (particularly

E >200 meV binding energy) but has little impact on the E < 100 meV region near the

Fermi level. The rapid change in photoemission amplitude near the Fermi level versus

temperature at T < 50 K is visible in the raw data (Fig. (12) (b)) and is not significantly

modified by the method selected for background subtraction.

Fig. (13) shows the fitting of the U 6d band in momentum distribution curves (MDC)

from Fig. 3(c) of the main text, centered 25 meV from the Fermi level. Integrated intensity

of the 6d band along the momentum axis is assumed to remain constant versus temperature,

while the momentum-integrated intensity of the background as a function of temperature

is assumed to follow the trend presented by the raw data curves in the bottom panel of

Fig. (12). These curves are obtained far from band features and are taken to represent an

estimate of the overall background intensity, including both elastic and inelastic components.

A close lineshape correspondence is difficult to achieve due to the dome-shaped and pillar-

like background (see Fig. (14)), however the decline in intensity of the peaks necessitates
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(a)

(b)

FIG. 12. Shirley subtraction for Fig. 3(b) of the main text. Raw intensity curves are shown

in blue, and background subtracted curves are in green. (yellow) A unique Shirley background is

obtained by assuming 90% of the spectral intensity at E = 0.45 eV to be background, and taking the

difference between raw intensity and the Shirley background to represent density of states. (bottom

panel) The temperature dependent trend seen in raw spectral intensity is roughly identical to the

background subtracted curves (Fig. 3(b)). Curves in the bottom panel are normalized at E = 0.5

eV binding energy.
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FIG. 13. Peak Width fitting of the curves in Fig. 3(c) of the main text. Data are symmetrized and

the band is fitted to a Lorentzian (red curves) on top of a strong background (green curves). Area

of the Lorentzian band feature is held constant as a function of temperature, while the background

intensity is taken to decline slightly following the trend observed in Fig. (12). The lower right panel

shows the deviation observed at k > 0.25Å−1 when width is fixed to an artificially small value for

the T = 65 K curve

that the 6d band be made broader in momentum at higher temperatures. Uncertainty in the

background lineshape is problematic at temperatures greater than T >∼ 50 K, and we have

not reported width estimates for temperatures T > 65 K. The primary fitting constraint for

T = 65 K is the lineshape at k > 0.25Å−1 (see Fig. (12) (b), lower right panel).
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FIG. 14. ARPES background. (a) A column-like background feature is traced in on an ARPES

cut intersecting normal emission from the [001] surface. Image reproduced from Ref.[14]. (b)

The column-like background feature is traced on an ARPES image of the 6d band dispersion at

7 degrees from normal emission. (c) Constant-energy curves from Fig. 3(a) in the main text are

offset on the vertical axis. Spectral intensity of the dispersive features is lower at higher binding

energy, revealing a dome-like background (approximated in black).
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