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Strong electron-boson coupling in the iron-based superconductor BaFe1.9Pt0.1As2
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Understanding the formation of Cooper pairs in iron-based superconductors is one of the most important
topics in condensed matter physics. In conventional superconductors, the electron-phonon interaction leads to
the formation of Cooper pairs. In conventional strong-coupling superconductors like lead (Pb), the features due
to electron-phonon interaction are evident in the infrared absorption spectra. Here we investigate the infrared
absorption spectra of the iron arsenide superconductor BaFe1.9Pt0.1As2. We find that this superconductor has
fully gapped (nodeless) Fermi surfaces, and we observe the strong-coupling electron-boson interaction features
in the infrared absorption spectra. Through modeling with the Eliashberg function based on Eliashberg theory,
we obtain a good quantitative description of the energy gaps and the strong-coupling features. The full Eliashberg
equations are solved to check the self-consistency of the electron-boson coupling spectrum, the largest energy
gap, and the transition temperature (Tc). Our experimental data and analysis provide compelling evidence that
superconductivity in BaFe1.9Pt0.1As2 is induced by the coupling of electrons to a low-energy bosonic mode that
does not originate solely from phonons.

DOI: 10.1103/PhysRevB.98.224505

I. INTRODUCTION

Nearly half a century after the experimental discovery of
superconductivity, Bardeen, Cooper, and Schrieffer (BCS)
developed a model to explain this phenomenon [1]. The
BCS mechanism provides a microscopic description of weak-
coupling, phonon-mediated superconductivity in conventional
superconductors. Subsequently, Eliashberg [2,3] proposed a
more realistic model of the superconducting state that includes
the retarded nature of the phonon induced interaction applica-
ble to conventional strong-coupling superconductors like lead
(Pb) and mercury (Hg). The agreement of the parameters in
the self-consistent solutions of the Eliashberg equations, for
example, in Pb, with experimental results like the phonon den-
sity of states from inelastic neutron scattering [4], electronic
density of states from tunneling experiments [3], electronic
heat capacity enhancement [3], and infrared absorption [5]
provide strong evidence for the electron-phonon mechanism
of superconductivity in conventional superconductors.

For the iron-based superconductors, it has been argued that
phonons alone cannot explain the high transition temperatures
[6,7]. Spin and orbital fluctuations are currently the popular
candidates for mediating the formation of Cooper pairs [6,7].
There is some experimental evidence that collective spin
fluctuations may be the bosons that mediate the formation
of Cooper pairs. These experiments include inelastic neu-
tron scattering studies on both electron- and hole-doped iron
pnictides [8–11], scanning tunneling spectroscopy [12], and
specific heat measurements of hole (K) -doped BaFe2As2

[13], and quasiparticle interference imaging in LiFeAs [14].
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There have been a number of infrared studies on iron-based
superconductors [15–29]. However, they have not reported
clear evidence of strong electron-boson coupling features
in the infrared absorption data in the superconducting state
normalized to the infrared absorption data in the normal
state. Such features are expected to occur if superconductivity
is mediated by collective bosonic excitations. Although the
larger gap(s) in the iron-based superconductors are in the
strong-coupling regime, only a limited number of infrared
studies have considered strong-coupling approaches to model
the data [17–19,25–27]. The strong-coupling methods were
originally developed for strong electron-phonon interactions
but they are believed to describe the coupling of electrons
to any bosonic spectrum. In a few studies, researchers have
obtained the electron-boson spectral density from the scat-
tering rate only in the normal state [17,25–27]. One recent
work [18] provides a method to find the electron-boson in-
teraction both in the normal and superconducting states from
the infrared scattering rate (or self-energy). However, this
work does not check if the electron-boson spectral density
function is self-consistent with the energy gap by solving the
full Eliashberg equations. Charnukha et al. [19] have used
a multiband Eliashberg theory to fit the optical conductivity
to support the spin-fluctuation mechanism. Their model only
qualitatively describes the real part of the optical conductivity
in the superconducting state.

Previous experiments on high-quality single crystals of
superconducting BaFe1.9Pt0.1As2 reveal two isotropic gaps,
one 2–3 meV and the other 5–7 meV [30]. Here we re-
port infrared spectroscopy data on BaFe1.9Pt0.1As2 that is
consistent with multiband superconductivity with isotropic
gaps. The important finding is that we observe strong-
coupling electron-boson interaction features when the infrared
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FIG. 1. The ab-plane infrared reflectance of BaFe1.9Pt0.1As2 in
the superconducting state (T = 5 K) and normal state (T = 25 K).
Inset: the ab-plane infrared reflectance of BaFe1.9Pt0.1As2 at T =
5 K and T = 25 K in a wider spectral range.

absorption spectra in the superconducting state are normalized
to the infrared absorption spectrum in the normal state. The
frequency-dependent infrared absorption (A) is simply A =
1 − R where the frequency-dependent infrared reflectance
(R) is directly measured in the experiments. We identify a
bosonic mode centered about 5 meV that provides the pairing
glue in superconducting BaFe1.9Pt0.1As2. We employ theo-
retical modeling of the absorption spectra within the Allen
formalism [18,31] and Zimmermann formalism [32] based on
Eliashberg theory. The full isotropic Eliashberg equations are
solved to check the self-consistency of the Eliashberg function
(electron-boson spectral density function), the largest energy
gap, and Tc.

II. SAMPLES AND EXPERIMENTS

Single crystals of BaFe1.9Pt0.1As2 were grown using the
FeAs self-flux method, which is described in Refs. [30,33]
along with x-ray, transport, magnetic, and thermodynamic
measurements. The dc resistivity data show the onset of su-
perconductivity at Tc = 23 K [30,33]. Magnetic susceptibility
measurements show bulk superconductivity with full volume
fraction [30,33]. The ab-plane reflectance at various tempera-
tures from 300 to 5 K was obtained in a home-built cryogenic
setup with a Bruker Vertex 80v Fourier transform infrared
(FTIR) spectrometer in the frequency range 20–8000 cm−1

(2.5–990 meV) using the technique of in situ gold evaporation
[34]. Cryogenic ellipsometry was performed in a homebuilt
vacuum chamber with a Woollam variable-angle spectro-
scopic ellipsometer in the energy range 0.6–6 eV [34].

III. EXPERIMENTAL RESULTS, MODELING,
AND DISCUSSION

A. Infrared reflectance and absorption

The ab-plane infrared reflectance of a BaFe1.9Pt0.1As2

crystal is shown in Fig. 1. In the normal state at T = 25 K,
BaFe1.9Pt0.1As2 is highly reflective at low frequencies consis-
tent with metallic behavior as in other metallic iron arsenides

FIG. 2. (a,b) Experimental data showing infrared absorption in
the superconducting state (T = 5 K) normalized to infrared absorp-
tion in the normal state (T = 25 K). Also shown are fits to the
experimental data using four different methods described in the
text. The Eliashberg functions α2F shown in (a) consist of one
sharp, large peak and one smaller, broad peak in the superconducting
state for both Allen formalism and Zimmermann formalism. (b)
Zoomed-in view of the valley-peak-valley region (≈90–200 cm−1)
in the normalized absorption spectrum shown in (a). Experimental
error bars at representative frequencies are also shown in (b).

[15,20–22,24–29,34]. At T = 5 K, well below Tc, supercon-
ductivity leads to changes in the spectrum at frequencies
below ≈250 cm−1. Superconductivity is observed directly
from perfect reflectance at frequencies below 31.5 cm−1 in
the T = 5 K spectrum. The data are consistent with a fully
gapped (nodeless) superconductor close to the dirty limit [20–
22,35,36]. Features at ≈260 and ≈320 cm−1 are observed
in the normal state spectrum and these features are nearly
unchanged in the superconducting state spectrum. The feature
at ≈260 cm−1 is due to an infrared-active phonon. The some-
what broader feature at ≈320 cm−1 is possibly due to a weak
optical interband transition.

The absorption in the superconducting state AS (T ) for
T < Tc is obtained from the equation AS (T ) = 1 − RS (T ),
where RS (T ) is the reflectance in the superconducting
state. Similarly, the normal state absorption AN (T = 25 K)
is obtained from AN (25 K) = 1 − RN (25 K). The ratio
AS (5 K)/AN (25 K) is plotted as a function of frequency
in Fig. 2. There are clear features at 80–200 cm−1 which
are larger than the error bars [see Fig. 2(b)]. The sharp
peak at 87 cm−1 is due to the largest gap. Above this gap
feature, we observe a “valley-peak-valley” structure. When
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we compare our normalized infrared absorption data of
BaFe1.9Pt0.1As2 to the normalized infrared absorption data of
the well-known conventional strong-coupling superconductor
lead (Pb) (Refs. [5,31]), we see they are remarkably similar.
In Pb, acoustic phonons are the bosonic modes which mediate
the formation of Cooper pairs, and the valleys in the absorp-
tion data are due to the peaks in the phonon density of states
shifted by the gap 2�. Hence, the valleys in the absorption
data of BaFe1.9Pt0.1As2 roughly correspond to peaks in the
density of states of bosonic modes shifted by the largest gap
2�3.

In the following Secs. III B and III C, two different mod-
els have been applied to fit the normalized absorption of
BaFe1.9Pt0.1As2, in order to quantitatively determine the
bosonic mode coupled to the electrons.

B. Modeling strong-coupling features with Allen formalism

In order to quantitatively study the bosonic modes in
superconducting BaFe1.9Pt0.1As2 and obtain a fit to the ex-
perimental normalized absorption, we start from Allen’s for-
malism (optical self-energy method) generalized to multiband
conductivity [18,31,37]. The imaginary part of the optical
self-energy is

�
op

2 (ω, T )=−1

2

[∫ ∞

0
d�α2F (�, T )K (ω,�, T )+ 1

τ
op

imp(ω)

]
,

(1)

where α2F (�, T ) is the Eliashberg function (electron-boson
spectral density function), K (ω,�, T ) is the kernel of Allen’s
integral equation, and 1/τ

op

imp(ω) is the impurity scattering rate
[18]. Equation (1) is applicable to both the normal phase and
the superconducting phase, but K (ω,�, T ) and 1/τ

op

imp(ω) are
different for the two phases:

K (ω,�, T ) = π

ω

[
2ω coth

(
�

2T

)
− (ω + �) coth

(
ω + �

2T

)

+ (ω − �) coth

(
ω − �

2T

)]
(for normal state), (2a)

K (ω,�, T ) = 2π

ω
(ω − �)�(ω − 2� − �)

×E

[√
(ω − �)2 − (2�)2

ω − �

]

(for superconducting state at T = 0K ), (2b)

where �(x) represents the Heaviside step function, E(x)
represents the complete elliptic integral of the second kind,
and � is the energy gap. The impurity scattering rate is

1/τ
op

imp(ω) = 1/τimp(for normal state), (3a)

1/τ
op

imp(ω) = (1/τimp) E

[√
ω2−(2�)2

ω

]
(for superconducting state at T = 0 K),

(3b)

in which 1/τimp is a constant. Then the real part of the
optical self-energy can be obtained by the Kramers-Kronig

transformation:

�
op

1 (ω) = −2ω

π
P

∫ ∞

0
d�

�
op

2 (ω)

�2 − ω2
. (4)

The complex optical conductivity for one channel is

σ̃ (ω) = ω2
p

8πi

1

�̃op(ω) − ω/2
, (5)

where ωp is the plasma frequency in one channel and
�̃op(ω) = �

op

1 (ω) + i�
op

2 (ω). The total conductivity is the
sum of different channels (here we have three channels due
to the multiband nature of this material):

σ̃total(ω) = σ̃ch1(ω) + σ̃ch2(ω) + σ̃ch3(ω). (6)

We then add the contributions of the interband transitions
from the experimental data at higher frequencies to the total
low-frequency conductivity calculated from the model. The
reflectance is calculated from the real and imaginary parts of
the total optical conductivity (Appendix B). The absorption is
calculated from the reflectance.

In both normal state and superconducting state, the Eliash-
berg function α2F (�) only appears in the optical self-energy
of the largest gap channel, while for the two smaller gap
channels only impurity scattering is considered in the optical
self-energy. The parameters in the fit are as follows: the
impurity scattering rate (1/τimp = 370 cm−1) consistent with
the experimental data, the weights of the square of the total
plasma frequency in each conductivity channel, and the three
energy gaps in the superconducting state (discussed below).
The total plasma frequency of 1.45 eV is obtained from the
low-frequency optical conductivity data at T = 25 K in the
normal state (Appendix A). Our best fits to the normalized
absorption data and the corresponding Eliashberg function
α2F (�) are shown in Figs. 2(a) and 2(b). The smallest gap
2�1 = 31.5 cm−1 corresponds to the onset of absorption and
the largest gap 2�3 = 87 cm−1 corresponds to the peak at
87 cm−1 in the normalized absorption data. A third gap with
energy 2�2 = 58 cm−1 is required to fit the shoulder around
60 cm−1. However, �2 is associated with the Fermi surface
with a small spectral weight (10% of the square of the normal
state plasma frequency). The gaps �1 and �3 are associated
with Fermi surfaces that, respectively, represent 55% and 35%
of the square of the normal state plasma frequency. The small-
est gap �1 that we observe in BaFe1.9Pt0.1As2 is consistent
with four different experiments reported in Ref. [30]. The
existence of a larger gap has been previously suggested by
point contact spectroscopy experiments [30]. The observation
of multiple gaps is consistent with several earlier studies of
other types of iron-based superconductors [19,22,38]. For an
electron-doped Ba-122 system, angle-resolved photoemission
spectroscopy (ARPES) data show that a small gap occurs on
two electron pockets γ and δ, while a larger gap is on the outer
hole pocket (β band) [39]. The inner hole pockets are hard to
observe [39,40] due to their small spectral weight. Hence �2

could be the gap on the inner hole pockets.
The ratio 2�3/kBTc = 5.44 is clearly in the strong-

coupling limit compared to the BCS weak-coupling value of
3.53. The ratios of the other two gaps to Tc are either smaller
than (2�1/kBTc = 1.97) or close to (2�2/kBTc = 3.63) the
BCS weak-coupling value. This justifies using the Eliashberg
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function only in the conductivity channel associated with the
largest energy gap �3. In order to fit the two valleys in the
experimental normalized absorption spectrum, the Eliashberg
function in the superconducting state consists of two Gaus-
sian peaks: one large and sharp mode centered at frequency
�1 = 46 cm−1 and one broad, weaker mode centered at fre-
quency �2 = 121 cm−1. These two peaks approximately cor-
respond to the two valleys respectively centered at frequencies
115 cm−1 (≈�1 + 2�3) and 180 cm−1 (≈�2 + 2�3) in the
calculated normalized absorption spectrum. In order to obtain
the correct absolute value of normalized absorption, only the
weak, broad peak is necessary in the Eliashberg function
for the normal state. Here we discuss the calculated normal-
ized absorption using three methods while keeping the same
energy gaps: the multiband Allen formalism including both
electron-boson interaction and impurity scattering 1/τ

op

imp(ω),
the multiband Allen formalism with only impurity scattering,
and multiband Mattis-Bardeen theory [41] (with constant nor-
mal state conductivity σ1 = 6000 �−1 cm−1 consistent with
the low-frequency conductivity data at T = 25 K shown in
Appendix A). The multiband Mattis-Bardeen theory assumes
the gaps are isotropic s-wave gaps in the weak-coupling limit,
and the total conductivity is the superposition of the differ-
ent superconducting channels. The multiband Mattis-Bardeen
theory has been applied to iron-based superconductors pre-
viously [16,20–22,28,42]. The model fits are compared in
Fig. 2. Neither multiple band Mattis-Bardeen theory nor the
Allen formalism with only impurity scattering capture the
valley-peak-valley features in the normalized absorption data.
The introduction of electron-boson interaction to the optical
self-energy for the largest gap is required to fit the valley-
peak-valley features between ≈90 and 200 cm−1.

Since the Allen formalism is expected to provide only
an approximate quantitative description of strong-coupling
superconductors [18,31], we take the important step to check
the self-consistency of the energy gap and the Eliashberg
function α2F (�) used in the Allen formalism by solving the
full Eliashberg equations. For this we assume an isotropic
energy gap consistent with experiments [30] and the effec-
tive Coulomb pseudopotential μ∗ = 0.1 [43]. The Eliashberg
equations are solved using EPW4.2 as described in Ref. [43].
The renormalization function Z(ω) and the superconducting
gap �(ω) are first solved on an imaginary energy axis and
then an analytic continuation is performed to the real axis.
The solved gap function is 2�(ω = 0) = 85 cm−1, which is
almost identical to the largest gap 2�3. We also calculate Tc

from the Eliashberg function. The lower limit of Tc can be
estimated from McMillan’s formula [44],

Tc,min = 〈ω〉
1.20

exp[−1.04(1 + λ)/(λ − μ∗ − 0.62λμ∗)], (7)

where μ∗ is assumed to be 0.1, and

λ = 2
∫ ∞

0
d� α2F (�)/�, (8)

〈ω〉 =
{∫ ∞

0
d� α2F (�)

}/{∫ ∞

0
d�α2F (�)/�

}
. (9)

Thus we obtain Tc,min = 17.1 K. An upper limit of Tc is
given by the generalized McMillan equation [18,44],

kBTc,max
∼= 1.13h̄ωlnexp[−(1 + λ)/λ], (10)

where

ωln = exp

[
(2/λ)

∫ ∞

0
d� ln �α2F (�)/�

]
, (11)

and this gives Tc,max = 24.6 K. The estimates of Tc are consis-
tent with the experimental transition temperature of 23 K.

C. Modeling strong-coupling features with
Zimmermann formalism

In order to confirm the results of the modeling based on
the Allen formalism, we apply a second approach to model
our data: the formalism of Lee, Rainer, and Zimmermann [32]
(we call it Zimmermann formalism in this article) to calculate
the optical conductivity in the strong-coupling regime. The
Zimmermann formalism has advantages in that it is self-
consistent and incorporates temperature dependence in the
superconducting state. Similar results to the Zimmerman for-
malism have been derived by Marsiglio [45] and Schachinger
and Carbotte [46], which indicate the robustness and signifi-
cance of the formalism. The temperature-dependent complex
conductivity in the superconducting state takes the following
expression [32,47]:

σ (ω, T ) = ω2
p

16π3ω

∫ +∞

−∞
dε

{
tanh

(
ε

2kBT

)
M (ε, ω)

× [g(ε)g(ε + ω) + h(ε)h(ε + ω) + π2]

− tanh

(
ε + ω

2kBT

)
M∗(ε, ω)[g∗(ε)g∗(ε + ω)

+ h∗(ε)h∗(ε + ω) + π2] +
[

tanh

(
ε + ω

2kBT

)

− tanh

(
ε

2kBT

)]
L(ε, ω)[g∗(ε)g(ε + ω)

+h∗(ε)h(ε + ω) + π2]

}
(12)

where ωp is the plasma frequency in one conductivity channel
and

g(ε) = −πε̃(ε)√
�̃2(ε) − ε̃2(ε)

, (13a)

h(ε) = −π�̃(ε)√
�̃2(ε) − ε̃2(ε)

, (13b)

M (ε, ω) = [
√

�̃2(ε + ω) − ε̃2(ε + ω)

+
√

�̃2(ε) − ε̃2(ε) + 1/τ ]−1, (14a)

L(ε, ω) = [
√

�̃2(ε + ω) − ε̃2(ε + ω)

+
√

�̃∗2(ε) − ε̃∗2(ε) + 1/τ ]−1, (14b)
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in which 1/τ is the impurity, scattering rate. The quanti-
ties �̃ and ε̃ depend on energy ε, ε̃(ε) = εZ(ε) and �̃ =
Z(ε)�(ε). The complex renormalization function Z(ε) and
superconducting gap �(ε) are obtained by solving the stan-
dard Eliashberg equations for isotropic systems at real ener-
gies. In Eq. (12), the integral is implemented on the energy
axis from negative infinity to positive infinity. The negative
energy dependence of Z(ε) and �(ε) can be obtained from
the symmetry properties of Z(ε) and �(ε). Note that the real
part of both Z(ε) and �(ε) are even functions of energy, and
the imaginary parts of both Z(ε) and �(ε) are odd functions
of energy [48,49].

For the normal state, the conductivity can be expressed as

σN (ω, T ) = ωp
2

8πω

∫ +∞

−∞
dε

[
tanh

(
ε + ω

2kBT

)

− tanh

(
ε

2kBT

)]
MN (ε, ω), (15)

where

MN (ε, ω) = [−iε̃N (ε + ω) + iε̃∗
N (ε) + 1/τ ]−1, (16)

and ε̃N (ε) is defined by

ε̃N (ε) = ε +
∫ +∞

−∞
d� α2F (�)

[
iπ coth

(
�

2kBT

)

− �

(
1

2
+ i

−ε + �

2πkBT

)
+ �

(
1

2
+ i

−ε − �

2πkBT

)]
,

(17)

in which α2F (�) is the Eliashberg function and �(x) is the
digamma function. Negative energy dependence of α2F (�)
can also be obtained from symmetry properties of α2F (�).
Note that α2F (�) is an odd function of frequency (energy)
[50].

For the simulation based on the Zimmermann approach,
the following parameters were used for the strong-coupling
channel with the largest gap �3: ω2

p is 35% of the square
of the total plasma frequency of 1.43 eV, and the impurity
scattering rate in the normal state and superconducting state
is 370 and 160 cm−1, respectively. A lower impurity scat-
tering rate in the superconducting state compared to that in
the normal state gives a better fit to the experimental data.
This can be understood as follows: The effective impurity
scattering rate in the superconducting state is lower because
condensed electrons do not undergo impurity scattering. For
weak-coupling channels with energy gaps �1 and �2, we used
Mattis-Bardeen theory to calculate the conductivity. The total
optical conductivity is obtained by adding up the contribution
from the three parallel channels. The spectral weight (square
of the plasma frequency) ratios for the three conductivity
channels for the best fit are the same as in the Allen formalism
(55%, 10%, and 35% for the gaps �1, �2, and �3). The
best fit and corresponding Eliashberg function are shown in
Fig. 2. It can be seen in Fig. 2 that the Zimmerman model
has overall good quantitative agreement with the data because
it captures the valley-peak-valley features between 90 and
200 cm−1 and the frequencies of the peak and dip align very
well with those in the experimental data. Similar to Allen’s

method, the Eliashberg function in the superconducting state
still consists of two peaks, one large, sharp peak centered at
36.3 cm−1 (4.5 meV), and one small, broad peak centered
121 cm−1 (15 meV). The coupling constant λ = 4.27, and the
corresponding upper limit transition temperature Tc is 20.5 K.
Analogous with the results of the Allen formalism, only
the small, broad peak is included in the Eliashberg function
for calculating the normal state conductivity. The result of
solving the Eliashberg equations at 5 K gives the gap function
2�(ω = 0) = 81.2 cm−1, which is close to the result using
Allen’s formalism.

Our models based on the Allen and Zimmermann for-
malisms quantitatively describe the energy gaps and the
strong-coupling features in the experimental data (see Fig. 2).
However, we note that the model based on the Allen formal-
ism gives a better fit to the experimental data compared to the
model based on the Zimmermann formalism.

D. Origin of the bosonic modes

Next we discuss the origin of the two peaks in the Eliash-
berg function. The promising candidates for bosons which
mediate the formation of Cooper pairs are either spin fluc-
tuations or orbital fluctuations (induced by Fe phonons). Spin
resonance modes have been determined by inelastic neutron
scattering experiments [8–11]. The spin resonance, which
is observed only in the superconducting state in cuprates,
heavy-fermion, and iron-based superconductors, is generally
considered a feedback effect from superconductivity. Despite
some theoretical controversies, the resonance is viewed as a
spin-exciton bound state in the particle-hole channel. The ap-
pearance of the resonance implies a sign change of supercon-
ducting gap(s) between either different patches of the Fermi
surface or different Fermi pockets connected by a resonance
mode at momentum q (see Ref. [51] and references therein).
From the modeling of our infrared absorption data, the large
sharp peak in the Eliashberg function of BaFe1.9Pt0.1As2

is centered at 5.1 ± 0.6 meV (41 ± 5 cm−1), with a full
width at half maximum of 1 meV, and is only present in
the superconducting state. We note that the spin resonance
mode at 3D antiferromagnetic ordering wave vector Q =
(1, 0,−1) occurs in BaFe1.9Ni0.1As2 (a superconductor with
Tc = 20 K and similar to BaFe1.9Pt0.1As2), with resonance en-
ergy h̄ωres = 7 ± 0.5 meV, and width d = 1.9 ± 0.7 meV [8].
Inelastic neutron scattering experiments on BaFe1.9Pt0.1As2

are not available at present. If the bosonic mode we have
observed is due to spin fluctuations, then we expect that
a spin resonance mode about 5 meV will be observed in
future inelastic neutron scattering experiments. The center
frequency of the bosonic mode in our infrared experiments
is also not that different from the spin resonance mode of
another electron-doped material Ba(Fe1–xCox )2As2 which is
∼8–9 meV [10,11]. Note that the bosonic mode observed
in the optical response is the q averaged (all momenta
in the Brillouin zone) local susceptibility. From the above
discussion, we infer that the sharp peak about 5 meV in the
Eliashberg function of BaFe1.9Pt0.1As2 possibly represents the
spin resonance in the superconducting state. The important
point is that the 5-meV peak cannot be due to phonons alone
because it is lower in energy compared to the energy of

224505-5



XING, SAHA, PAGLIONE, AND QAZILBASH PHYSICAL REVIEW B 98, 224505 (2018)

the lowest peak in the phonon density of states in the par-
ent compound or doped BaFe2As2 [52,53]. Moreover, since
phonons are present in both the normal and superconducting
states, the 5-meV peak cannot be due to phonons alone
because it is only required in modeling the superconducting
state data and not required for modeling the normal state
data.

The broad, weak peak in α2F (�) is centered at 15 meV
(121 cm−1), with a width of 5 meV, and is required in the mod-
els for both the superconducting and normal states. Inelastic
x-ray scattering experiments have measured the lowest-energy
peak in the Fe phonon density of states centered at 13 meV,
with width approximately 5 meV. The phonon density of
states is nearly temperature independent [54]. Phonons are
likely the origin of the weak, broad mode. Actually, the posi-
tion and the width of the broad peak are also very similar to the
prediction of the resonance peak of the s++ wave pairing state
[55]. Possible explanations are that the weak, broad mode is
either due to electron-phonon interaction or due to phonon
induced orbital fluctuations. Note that the total electron-boson
coupling constant λ = 3.5–4.3 contains a significant contribu-
tion of 2.8–3.6 from the sharp peak, and a minor contribution
of only 0.7 from the broad peak. If the sharp peak in the
Eliashberg function is due to spin fluctuations, this means
spin fluctuations play the dominant role in superconductivity
in BaFe1.9Pt0.1As2. It would also support the presence of a
predominant s± gap in superconducting BaFe1.9Pt0.1As2 [6].
However, we note that superconductivity with relatively high
Tc is preserved in the presence of large impurity scattering in
BaFe1.9Pt0.1As2. This is more consistent with an s++ pairing
state because the s± pairing state is expected to be fragile
against impurities due to interband scattering [56].

E. Temperature-dependent features

Finally, we study the temperature dependence of the nor-
malized absorption spectra. The absorption spectra in the
superconducting state at T = 5, 10, 15, and 20 K, are nor-
malized to the normal state absorption data (T = 25 K) and
plotted in Figs. 3(a) and 3(b). It is clear that the amplitude of
the strong-coupling features due to electron-boson interaction
decreases when temperature increases toward Tc. However,
there is little frequency dependence of these features for
temperatures at and below 15 K. At T = 20 K, still below
Tc, the strong-coupling features weaken further and move
to lower frequencies. This may be caused by a reduction
of the energy gap �3 magnitude and a downward shift in
center frequency �1 of the bosonic peak as the tempera-
ture approaches Tc from below. The Allen formalism for
the superconducting state is meant for T = 0 K and works
well for temperatures much below Tc. To the best of our
knowledge, the Allen formalism for the superconducting state
at higher temperatures does not exist at present. Hence, we
cannot quantitatively model the temperature dependence of
the bosonic mode based on the Allen formalism. Nevertheless,
we attempt to follow the temperature dependence of the en-
ergy gaps using two alternative methods discussed below. The

FIG. 3. (a) Solid lines are temperature-dependent infrared ab-
sorption in the superconducting state normalized to infrared ab-
sorption in the normal state at T = 25 K. Dashed lines (red) are
Mattis-Bardeen fits to the normalized infrared absorption data. Dash-
dotted lines (blue) are the fits using Zimmermann’s formalism for
the largest energy gap, and Mattis-Bardeen formalism for the two
smaller energy gaps. (b) Zoomed-in view of the spectra showing the
peak associated with the largest gap 2�3 and the valley-peak-valley
strong-coupling features at different temperatures in the supercon-
ducting state. Arrows indicate the frequency of the first prominent
peak in the normalized absorption spectrum due to the energy gap
2�3 in the presence of impurity scattering. (c) Plot of the temperature
dependence of the three energy gaps and bosonic mode �1. Hollow
symbols (blue) represent energy gaps from Mattis-Bardeen formal-
ism (see text), filled symbols (green) represent the energy gap �3

from Zimmermann formalism, and half-hollow symbols (magenta)
represent bosonic mode �1. The dashed lines are the BCS prediction
of the temperature dependence of the energy gaps. The vertical dotted
line represents Tc.

first method is based on Mattis-Bardeen theory. The second
method based on the Zimmerman formalism also allows us to
model the temperature dependence of the low-energy bosonic
mode.

In the first method, the temperature-dependent energy
gap 2�3(T ) is estimated directly from the normalized ab-
sorption because it corresponds to the first prominent peak
position [shown by arrows in Fig. 3(b)] and is plotted in
Fig. 3(c). The temperature dependence of �1 and �2 can-
not be obtained directly from the data. However, since the
ratio 2�/kBTc for the smaller two gaps shows they are in
the weak-coupling regime, we have modeled the normalized
absorption using three-band Mattis-Bardeen formalism (we
assume the temperature dependence of the largest gap can
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be modeled with Mattis-Bardeen theory). The results are
shown in Fig. 3(c) with hollow symbols. The largest and
smallest gaps appear to deviate from the BCS prediction close
to Tc.

Since the Mattis-Bardeen description does not capture
the temperature dependence of the strong-coupling features
and the low-energy bosonic mode, we attempt to fit the
temperature-dependent normalized absorption using Zimmer-
mann’s formalism for the largest gap channel. In the model-
ing, we assume the low-energy bosonic mode is temperature
dependent and follows a similar functional dependence as
the energy gap [10]. Temperature-dependent complex renor-
malization function Z(ε) and superconducting gap �(ε) are
obtained by solving the standard Eliashberg equations for
isotropic systems at real energies. The Zimmermann formal-
ism is applied in the largest energy gap channel, and the
temperature dependence of the two smaller gaps in the weak-
coupling regime are modeled using Mattis-Bardeen theory.
The simulation results are shown in Fig. 3(a). The theoretical
model roughly captures the temperature-dependent trend of
the valley-peak-valley features. At T = 10 and 15 K, the
valley-peak-valley features become weaker compared to T =
5 K simulation, while there is some frequency dependence at
T = 15 K compared to the T = 5 and 10 K simulations. At
T = 20 K, a temperature close to Tc, the valley-peak-valley
features are nearly washed out in the simulation consistent
with the experimental data. The temperature dependence of
the energy gaps and the bosonic mode from the model is
shown in Fig. 3(c). There are larger error bars at higher
temperatures due to uncertainty in the solution of the Eliash-
berg equations using the EPW software when the temperature
approaches Tc.

IV. CONCLUSION

To conclude, we have observed temperature-dependent
features in the infrared absorption spectra arising from the
energy gaps and strong electron-boson interaction in the su-
perconductor BaFe1.9Pt0.1As2. This was enabled by careful,
systematic cryogenic infrared reflectance measurements. The
data are consistent with three nodeless energy gaps in the
superconducting state, out of which only the largest gap
is in the strong-coupling regime. We obtain the Eliashberg
function (electron-boson spectral density function) by mod-
eling the absorption data with both the generalized Allen
formalism and Zimmermann formalism. The largest gap, the
Tc, and the Eliashberg function were verified to be self-
consistent within the Eliashberg theory. We find that su-
perconductivity in BaFe1.9Pt0.1As2 arises primarily due to
pairing of electrons induced by a bosonic mode centered
at 5.1 ± 0.6 meV. This bosonic mode cannot be attributed
to phonons alone because it occurs at an energy less than
the lowest-energy peak in the phonon density of states. The
bosonic mode may originate from spin fluctuations although
we cannot rule out the role of orbital fluctuations or another
mechanism.

FIG. 4. The real part of the ab-plane optical conductivity σ1 is
plotted as a function of frequency at different temperatures. Inset:
the region shaded gray is the “missing area” between the normal
and superconducting state real conductivity that moves into the delta
function at ω = 0 in the superconducting state.
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APPENDIX A: OPTICAL CONDUCTIVITY

The temperature dependence of the real part of the opti-
cal conductivity σ1 is shown in Fig. 4. It is obtained from
Kramers-Kronig transformation of the reflectance data con-
strained by cryogenic ellipsometry data, similar to the pro-
cedure described in Ref. [34]. At T = 5 K, the real part of
the conductivity is negligible below the frequency 31.5 cm−1,
corresponding to the smallest gap. At higher frequencies,
there is a sharp increase of the conductivity just above the
gap and subsequently the conductivity reaches a maximum,
which is a clear indication of superconductivity in the dirty
limit. Indeed, the scattering rate in the normal state (T =
25 K) is 370 cm−1 which is much larger than the energy gaps
indicating that superconductivity is in the dirty limit. In fact,
the large radius Pt ion doped into the FeAs4 tetragon leads
to significant impurity scattering and to some degree of local-
ization at higher temperatures in the normal state. This can
be seen from the nonmonotonic frequency dependence of σ1

at low frequencies in the normal state at higher temperatures
(see Fig. 4).

The inset in Fig. 4 clearly shows the “missing” spectral
weight between the normal state conductivity and the
superconducting state conductivity. The missing spectral
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FIG. 5. The frequency-dependent (a) reflectance and (b) absorp-
tion in the superconducting state (5 K) and the normal state (25 K)
calculated from the Allen formalism and the Zimmermann formalism
and compared to the experimental data.

weight in the superconducting state is transferred into
the delta function at zero frequency which represents the
superfluid response to a dc electric field. The missing
spectral weight area is equal to the superfluid density [22],
ω2

ps = 8
∫ ωc

0 dω[σ1(ω, T = 25 K) − σ1(ω, T = 5 K)] = 1.9
× 107 cm−2, where the cutoff frequency ωc = 400 cm−1

is chosen so that the integral converges smoothly. The
superfluid density is consistent with that obtained from the
low-frequency limit ω2

ps = −ω2ε1 (ω → 0), where ε1 is
the real part of the dielectric function [22,57]. We use the
Drude-Lorentz model to separate the contribution of free
carriers and interband transitions to the conductivity in the
normal state (T = 25 K) [57]. In the simplest Drude-Lorentz
model, a single Drude feature is sufficient to describe the
free carrier contribution. The superfluid density at T = 5 K
is 14% of the Drude spectral weight in the normal state
(T = 25 K). An interpretation is that 14% of free carriers in
the normal state have condensed into the superconducting
state.

APPENDIX B: ABSOLUTE REFLECTANCE AND
ABSORPTION CALCULATED USING THE TWO MODELS

Absolute reflectance and absorption calculated [57] from
the total optical conductivity based on the Allen formal-
ism and the Zimmermann formalism in the superconducting
state (T = 5 K) and normal state (T = 25 K) are shown in
Fig. 5. We have obtained quantitatively good agreement to
the absolute reflectance and absorption data using the Allen
formalism. The Zimmermann formalism agrees better with
the experimental data at lower frequencies compared to higher
frequencies (above ≈100 cm−1).
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